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While quantum computers are capable of simulating many quantum systems efficiently, the
simulation algorithms must begin with the preparation of an appropriate initial state. We present a
method for generating physically relevant quantum states on a lattice in real space. In particular, the
present algorithm is able to prepare general pure and mixed many-particle states of any number of
particles. It relies on a procedure for converting from a second-quantized state to its first-quantized
counterpart. The algorithm is efficient in that it operates in time that is polynomial in all the essential
descriptors of the system, the number of particles, the resolution of the lattice, and the inverse of the
maximum final error. This scaling holds under the assumption that the wave function to be prepared
is bounded or its indefinite integral is known and that the Fock operator of the system is efficiently
simulatable. © 2009 American Institute of Physics. �DOI: 10.1063/1.3115177�

I. INTRODUCTION

Simulating quantum systems on a conventional com-
puter requires resources that generally scale exponentially
with the size of the system. Feynman1 proposed to solve this
problem using a quantum machine that would be able to
mimic the properties of the quantum system. Subsequently, it
has been demonstrated that quantum computers would be
able to simulate the time-dependent Schrödinger equation for
many systems of interest using resources that scale polyno-
mially with the size of the system.2–9 However, all such
simulations require the preparation of an appropriate initial
state, which must be preparable to within a chosen error.

In this work, we focus on the preparation of states on a
gate-model quantum computer. Our techniques can therefore
complement those developed for the preparation of states in
other models of quantum computation, such as adiabatic
quantum computing.6,10

In general, we will call a state on n qubits “efficiently
preparable” if it can be prepared to within error � using
poly�n ,�−1� elementary �one- and two-qubit� quantum gates.
Unfortunately, the efficiently preparable states form only a
small subset of all quantum states. This is because a general
state on n qubits contains 2n amplitudes and therefore one
needs O�2n� gates to prepare it.11 Indeed, state-preparation
algorithms are known that almost reach this lower bound.12,13

In this work, we show that if wave functions are repre-
sented on a grid in real space, then most quantum states of
physical interest are efficiently preparable. This is of interest
because efficient, grid-based simulation algorithms are
known for physically realistic systems.3–5,8

Our work extends that of Zalka,4 who, in introducing
real-space quantum simulation, also provided the first state
preparation algorithm. However, his procedure is able to pre-
pare only states of single particles or uncorrelated many-
particle systems. We show how to use Zalka’s single-particle

wave functions as building blocks, permitting the preparation
of general superpositions and mixed states of an arbitrary
number of particles. Our approach is motivated by
electronic-structure theory, in that we choose particularly
convenient single-particle bases in which to expand more
complicated states. We use the single-particle eigenstates to
form Slater determinants �configurations�, superpositions of
which are used to express general many-particle states.

Our scheme is essentially a method for translating states
in second quantization to the corresponding states in first
quantization. This has two advantages. First, many useful
states that might be needed in first quantization are easily
prepared in second quantization.14 In particular, we can pre-
pare eigenstates of operators if our scheme is combined with
full configuration interaction �FCI�,15 an exact diagonaliza-
tion method. FCI is classically an exponentially hard prob-
lem due to the exponential growth of the number of configu-
rations with system size, but it can be computed on a
quantum computer in polynomial time.6 The quantum FCI
operates in second quantization and can compute, for ex-
ample, the ground state wave function of a molecular system.
The second benefit of our method is that it is often easier to
simulate time evolution in real space than in Fock space. For
instance, every simulation in second quantization would re-
quire a separate set of basis-set-dependent operators and
there might be some processes, such as ionization, which
could not be adequately described using a small, localized
basis set. In first quantization, however, all problems of
chemical interest can be efficiently simulated by direct simu-
lation of the molecular Hamiltonian in real space.8

This paper is organized as follows. We first consider the
preparation of many-particle states in which all the particles
are the same. There are three steps: the preparation of single-
particle eigenstates in a chosen basis, the preparation of
many-particle configurations, and finally the preparation of
superpositions of configurations. We discuss the preparation
of mixed states, after which we turn to systems with many
different types of particles. Again, we consider the prepara-a�Electronic mail: aspuru@chemistry.harvard.edu.
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tion of configurations, their superpositions, and mixed states.
We close by showing that the algorithm is efficient in that its
run time is polynomial in the size of the system, the number
of qubits used to encode the wave function, and the inverse
of the maximum allowed error.

II. ONE TYPE OF PARTICLE

Our algorithm translates from second to first quantiza-
tion and therefore depends on the basis which is chosen for
the representation of the second-quantized states. We require
a finite orthonormal basis of functions ��1 , . . . ,�M�, which

are the eigenstates of a known operator F̂ on an
M-dimensional, single-particle Hilbert space. In our analogy

with electronic-structure theory, F̂ would be the Fock opera-
tor for a single particle,15 and indeed we expect that the

algorithm would be at its most useful if F̂ is chosen as the

Fock operator of an actual system. Although the form of F̂
can be arbitrary, subject to a few restrictions below, we will

take advantage of the analogy and refer to F̂ as the Fock
operator. We will also say, for example, that two eigenstates

of F̂ are degenerate if their energies �the corresponding ei-
genvalues� are the same.

To ensure that the overall state-preparation algorithm

scales efficiently, we require that F̂ can be efficiently simu-
lated on a quantum computer, i.e., that the simulation time
scales polynomially with the size of the system. More pre-
cisely, if there are m particles occupying the M orbitals and
the simulation is done on a grid of 2l sites �see below�, then,

for any t and any ��0, there exist a unitary Û, composed of
poly�m ,M , l , t ,�−1� elementary �one- and two-qubit� quan-

tum gates, such that �Û−e−iF̂t���. Intuitively, this means
that given an initial state, the final state generated by the

action of F̂ for time t can be calculated with reasonable effort
and reasonable error.

Several classes of Hamiltonians are known to be effi-
ciently simulatable and together they ensure that most physi-
cally relevant Fock operators will also be efficiently simulat-
able. Very generally, an operator can be efficiently simulated
if its matrix in a given basis is sparse.10,16,17 In particular, this
includes Hamiltonians that are sums of local operators, each
of which acts on only a few degrees of freedom.2,11 In addi-
tion, many physically realistic real-space Hamiltonians �such
as those for chemical systems� can be efficiently
simulated.3–5,8

We finally note that the requirement that the basis be
orthonormal may exclude certain commonly used basis sets.
Many of the usually encountered bases are appropriate, such
as plane waves or molecular orbitals, which diagonalize the
molecular Hartree–Fock Hamiltonian. However, nonorthogo-
nal bases, such as Gaussian wavepackets or atomic orbitals
on more than one atomic center, are not suitable for state
preparation using our procedure.

A. Single-particle eigenstates

A single-particle basis function � can be prepared on a
grid by the state preparation method first proposed by Zalka4

and rediscovered independently by both Grover and
Rudolph18 and Kaye and Mosca.19 The algorithm first pre-
pares the absolute value of the function, followed by the
addition of the phases. Specifically, given a register of l qu-
bits, representing a grid of 2l points, and a basis state ��x�
normalized over a length L, the algorithm first performs the
transformation

�0	 → ��	 = 

x=0

2l−1 ���x
L

2l��x	 ,

where each integer-valued state �x	 is a position on the suit-
ably scaled grid. This state is generated from the state
�000¯	 by redistributing its amplitude l times across the
eigenstates �x	. To perform the redistribution correctly, we
calculate the integrals

Ii,k =
�k�L/2i�

�k+1��L/2i����x��2dx

�k�L/2i�
�k+2��L/2i����x��2dx

, �1�

for k=0, . . . ,2i−2 and i=1, . . . , l. The fraction Ii,k is simply
the probability that a particle in the �k+1�th subdivision of
size L /2i is also in its left half. If the denominator in Ii,k is
zero, there is no amplitude to redistribute, so we can skip this
step. The first split is realized by performing a rotation on the
first qubit by arccos��I1,0�, corresponding to the transforma-
tion

�0,¯	 → �I1,0�0,¯	 + �1 − I1,0�1,¯	 .

This splits the norm of the initial state so that the appropriate
proportion is present on each half of the grid. The subsequent
finer splits are carried out in superposition using controlled
rotations on each qubit. For example, after the second itera-
tion, the correct proportion of the norm is present in each
quarter of the grid. After l iterations, one obtains the desired
state. Note that adding a single qubit and the corresponding
rotation doubles the precision of the grid. Consequently, the
absolute value of the wave function can be efficiently ap-
proximated to any desired accuracy. Phases can be added
where necessary through phase kickback.20 Given a proce-
dure that can transform �x	→ei arg ��x��x	, we can complete
the preparation of ��	 as



x=0

2l−1 ���x
L

2l��x	 → 

x=0

2l−1

ei arg ��xL/2l����x
L

2l��x	

= 

x=0

2l−1

��x
L

2l�x	 = ��	 .

The same algorithm can be straightforwardly generalized
to a three-dimensional grid, where the position eigenstates
are in Cartesian coordinates and the corresponding three-
dimensional integrals are used. In addition, particle spin can
be represented using additional qubits. A particle with spin S
requires �log2�2S+1�� qubits to store its z-projection mS. In
particular, there is a natural mapping between the spin of
spin-1

2 particles and the states of a single qubit. If the Fock
operator is spin-free, the eigenstates will have separable spa-
tial and spin degrees of freedom, making the complete
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single-particle state ��	�mS	. Preparing the spin part of this
wave function is relatively easy, for it suffices to initialize
the spin register in an integer state. If, however, the eigen-
state has correlation between the spatial and spin degrees of
freedom, it can be prepared using the techniques in Secs.
II D and III. That is, we treat the particle as if it were a
composite system—composed of a spinless, spatial part and
a spin—and prepare its eigenstate using the techniques be-
low. In what follows, we will assume that our particles are
fermions and we will note where the algorithm would need
to be modified for bosons.

B. Computational complexity of integration

The preceding method for preparing single-particle
states requires the evaluation of integrals �Eq. �1��. Since this
must be performed in superposition, the integrals must be
computed on the quantum computer: precomputing them
classically would require an exponentially large look-up
table. Consequently, the computational complexity of the
state preparation procedure will depend on the cost of com-
puting the integrals.4,18 An integration procedure will, given
a function � :V�Rd→R �where V is a bounded region�,
supply an estimate Ĩ of the integral I=�V��x�dx such that

�Ĩ− I���I with a certain fixed probability � �we will call this
condition the ��I ,�� absolute error�.

Integrals can be evaluated either analytically or numeri-
cally. If the indefinite integrals of the basis functions are
known, the definite integrals over any box on the Cartesian
grid can be computed. The values of the indefinite integrals
themselves can usually be computed efficiently �i.e., with
polynomial cost in the desired accuracy� because they usu-
ally contain simple mathematical functions. In particular, the
time it takes to retrieve n digits of any elementary function is
a polynomial in n �Ref. 21� and likewise for compositions of
elementary functions.

If the indefinite integrals are either unknown or imprac-
tical to compute, numerical techniques can be used. In par-
ticular, any classical numerical technique can, in principle,
be implemented on a quantum computer. For example, com-

puting Ĩ by Monte Carlo requires, in the worst case,22

���−1�1 − �/2��2�2/�I
2�

samples of � for an ��I ,�� absolute error, where
�2 is an estimate of the variance of � over V and
��z�= �2��−1/2�−	

z exp�−u2 /2�du is the standard normal cu-
mulative distribution function. In particular, if � is bounded
so that �L���x���U for all x�V, the number of required
samples is limited22 to

���−1�1 − �/2���U − �L�/2�I�2� .
That is, Monte Carlo integration of any finite-variance func-
tion requires time that scales as O��I

−2�. Acceptable wave
functions need not be continuous or even finite23 �and hence
may have infinite variance�, but such examples are rather
contrived and rarely encountered in practice �but see below
for �-functions�.

Furthermore, it is known that quantum computers are
able to offer a quadratic speed-up over conventional proba-

bilistic methods of integral evaluation. Quantum integration
techniques24,25 rely on amplitude amplification26 to achieve a
computational complexity of O��I

−1�. This has been proven
optimal by Nayak and Wu27 and Novak.28 These techniques
have the same general applicability as classical Monte Carlo
and will likewise succeed for any bounded function. Further-
more, the state preparation scheme of Soklakov and
Schack,29 which relies on amplitude amplification, also suc-
ceeds in O��I

−1� time.
The preceding assumes that the function that we seek to

prepare does not depend substantially on grid spacing. We
would expect that of realistic wave functions, assuming that
the grid spacing is smaller than the smallest wavelength of
the system. A useful exception are Kronecker �-functions,
defined on a grid of 2l points as ��x�=2l/2�x,x0

, where x0 is a
constant vector. The variance of �-functions grows exponen-
tially in l and therefore they cannot be integrated efficiently
by Monte Carlo or prepared efficiently using the method of
Soklakov and Schack.29 However, they can still be prepared
efficiently using our techniques because their indefinite inte-
gral, the Heaviside function, can be easily computed in time
independent of l.

It remains to be shown that an error in the evaluated
integral translates to a comparable error in the prepared func-
tion. If the integrals �1� have a maximum error �I, that is,

�Ĩi,k− Ii,k���I, and the error in the final prepared state ��̃	 is
��=1− ���̃ ��	�, we find that ��� l�I /2. In the case l=1,

��	=�I�0	+�1− I�1	 and ��̃	=�Ĩ�0	+�1− Ĩ�1	. Then, assum-

ing 0� Ĩ�1, which is necessary for ��̃	 to be an acceptable
state,

�� = 1 − �IĨ − ��1 − I��1 − Ĩ� � 1 − �1 − �I �
�I

2
,

where we assumed that �I
1. For larger l, a similar analysis
applies qubit-wise: one finds that ��̃ ��	� �1−�I�l/2�1
− l�I /2 �the last inequality holds for all �I if l�2�, whence
��� l�I /2. That is to say, the error in the prepared state
grows only polynomially with the error in the evaluated in-
tegral, a fact that we will use later on to establish the com-
putational cost of the state preparation algorithm.

C. Many-particle eigenstates

The next step is to use Zalka’s algorithm to prepare mul-
tiparticle configurations. That is, we wish to prepare the
position-space representation of a second-quantization state
�n1n2¯nM	2nd �a Fock eigenstate�, where ni is the occupation
number of the basis orbital �i�1� i�M�. The position-space
representation of �n1n2¯nM	2nd will be a Slater determinant
of the occupied orbitals, and it will be an eigenstate of the
many-body Hartree-Fock Hamiltonian,

Ĥ = 

i=1

m

F̂i, �2�

where m is the total number of particles and F̂i is the Fock

operator F̂ acting on the particle i.15
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We assume that the state �n1n2¯nM	2nd has already been
prepared by some previous algorithm. The M basis orbitals
are occupied by m particles and we let j1 , . . . , jm be the indi-
ces of the occupied orbitals. We therefore wish to perform
the transformation

�n1n2 ¯ nM	2nd � �0¯	1st

→ �n1n2 ¯ nM	2nd �
1

�m!



��Sm

sgn������� j1
� j2

¯ � jm
�	1st

�3�

which takes the input state and prepares the appropriate first-
quantized Slater determinant ��	1st, a superposition of all the
permutations on the m occupied orbitals �Sm is the symmetric
group on m elements and sgn denotes the signature�. Here
�0¯	1st contains m registers for the m first-quantized occu-
pied orbitals �� j1

	1st , . . . , �� jm
	1st. Note that Eq. �3� is not in

general a reversible operation, as multiple input states would
be mapped to the same antisymmetrized result. To ensure the
algorithm is reversible, we additionally require30 that
j1� j2� ¯ � jm. The procedure can be slightly modified if
bosons are in question, then sgn��� is to be omitted, and the
ji must satisfy j1� j2� ¯ � jm.

The transformation �3� is accomplished in two steps.
First, the occupied single-particle basis orbitals are each pre-
pared in a separate register, forming a Hartree product,

�n1n2 ¯ nM	2nd � �0¯	1st

→ �n1n2 ¯ nM	2nd � �� j1
� j2

¯ � jm
	1st.

The procedure can be modified in the case of bosons by
counting the occupation of each orbital and preparing that
many copies in separate registers.

In the next step, the Hartree product is antisymmetrized,
which produces the desired Slater determinant. To complete
this step, we introduce an improved form of the antisymme-
trization algorithm developed by Abrams and Lloyd.30 The
algorithm begins with the m wave functions �� ji

	 to be anti-
symmetrized in register A, and m �log2 m� qubits in register B
�where each grouping of log2 m qubits constitutes a “qu-
word”� initialized to �0	. Using a series of controlled rota-
tions, B is converted to the state

1
�m!



i=1

m

�i	B�1� � 

i=1

m−1

�i	B�2� � ¯ � �1	B�m�,

which is a superposition of m! unique states consisting of m
quwords each and B�i� denotes the ith quword in register B.
Next we will transform this state into the superposition

1
�m!



��Sm

���1, . . . ,m�	B

as follows. First let B��1�=B�1�. Then assign to B��i� the
B�i�th natural number not present in the set
�B��1� ,B��2� , . . . ,B��i−1��. This leaves the quantum com-
puter in the state

1
�m!

�� j1
� j2

¯ � jm
	A � 


��Sm

���1, . . . ,m�	B. �4�

Register B now contains a symmetrized state and this sym-
metry can be transferred to register A by sorting B while
performing the same swaps on the wave functions in A. This
yields the symmetrized state

1
�m!



��Sm

���� j1
� j2

¯ � jm
�	A � �1,2, . . . ,m	B, �5�

which is what we would keep if we were interested in pre-
paring bosonic states. To instead obtain an antisymmetrized
state, we need only count the number of exchanges made in
the sort, and reverse the sign of the wave function if it is odd.
If we now eliminate register B, A contains the desired mul-
tiparticle state ��	1st.

The original algorithm, introduced by Abrams and
Lloyd, included an additional auxilliary register C, which
would then be used as an intermediate for the sorting of A
and B. We eliminate this step by sorting A and B together
directly.

D. Superpositions

We now generalize the algorithm to the preparation of
superpositions of many-particle states. Given a superposition
of second-quantization states �ni	2nd= �n1in2i¯nMi	2nd, with
amplitudes i, we wish to perform the transformation

�

i

i�ni	2nd � �0¯	1st → �0¯	2nd � �

i

i��i	1st .

The superposition on the left might come from a variety of
sources. For example, an easily prepared equal superposition
of Fock states would result in an equal superposition of real-
space wave functions. Wang et al.14 provided an algorithm
for preparing general superpositions of Fock states on a
quantum computer. Alternatively, a quantum electronic-
structure algorithm could be used to efficiently produce a
physically relevant superposition. For example, an FCI algo-
rithm could specify the ground state of a chemical or other
many-body system in terms of a superposition of Fock
states.6

As before, we begin by applying Zalka’s state prepara-
tion algorithm to the input state. Because this linear opera-
tion is carried out in superposition, it accomplishes the trans-
formation

�

i

i�ni	2nd � �0¯	1st

→ 

i

i�ni	2nd � �� j1i� j2i ¯ � jmi	1st.

Note that the single-particle wave functions are now en-
tangled with the input state. For a multiparticle eigenstate,
the situation was different because the resulting state was
separable. Hence, to separate the first-quantized wave func-
tions from the second-quantized ones, we must “uncompute”
the second-quantized states. This must be accomplished us-
ing only manipulations on the register containing the first-
quantized wave functions ��i	1st; if we can regenerate the
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input state from the wave functions, the input register can be
reset to �0	2nd as desired. Given the one-to-one correspon-
dence between a second-quantization state and the corre-
sponding first quantization wave functions, regenerating the
input state amounts to the problem of identifying the wave
functions ��i	1st given only the information contained in their
first-quantized representation.

For nondegenerate eigenstates, each state ��i	1st can be
uniquely identified using its energy, which can be obtained
through the phase estimation procedure.20,31,32 In general,

given a unitary Û and its eigenstate ��	, the phase estimation
algorithm finds the eigenvalue of ��	. Specifically, since

Û��	=e2�i���	, we have Ûk��	=e2�ik���	. By controlled ap-

plications of the powers of Û to ��	, controlled on the state

�1 /2q/2�
k=0
2q−1�k	, one gets �1 /2q/2�
k=0

2q−1�k	Ûk��	
= �1 /2q/2�
k=0

2q−1e2�ik��k	��	. An efficient quantum Fourier
transform �QFT� on the control qubits will now yield the first

q digits of the binary expansion of �. If we choose Û such

that Û��i	1st=e2�iEi��i	1st, we can use phase estimation with
enough control qubits to obtain an approximation of the en-

ergies Ei. In particular, the natural choice Û=e−iĤt, where Ĥ
is the Hartree–Fock Hamiltonian �2�, supplies the appropri-

ate unitary for a suitable choice of the time t. Note that Û can

be simulated efficiently because Ĥ is a sum of Fock opera-
tors, which are efficiently simulatable by assumption. The
energy eigenvalues are stored in an additional register con-
taining enough qubits to provide precision that distinguishes
between nearby energies.

In the case that the spectrum of Ĥ is degenerate, proper-
ties other than the energy of the states need to be used to
distinguish them. If the degeneracy is caused by a symmetry
of the Hamiltonian, the elements of the symmetry group can
be used for this discrimination, as we outline in Sec. II E. If
the degeneracies are accidental, other techniques are re-
quired, and we give some suggestions in Sec. II F. In addi-
tion, the techniques in Sec. II F can be used for distinguish-
ing eigenvalues that are exponentially close and therefore
cannot be distinguished efficiently by phase estimation.

Phase estimation using both Û to find energy eigenval-
ues and appropriate symmetry operations to distinguish de-
generate states will provide us with a unique combination of
eigenvalues for each state in the superposition. These eigen-
values can then be used �for example in conjunction with a
look-up table� to uniquely identify the wave function and
subtract 1 from the corresponding occupation number vector
of the second-quantization state. Because this is done in su-
perposition for every single-particle wave function, the input
state is converted to �0	2nd. This accomplishes the total trans-
formation

�

i

i�ni	2nd � �0¯	1st

→ �0¯	2nd � �

i

i�� j1i� j2i ¯ � jmi	1st , �6�

which is a separable state. The antisymmetrization step can
now proceed in superposition as usual, resulting in the final

state ��	1st=
ii��i	1st, as desired. This completes the state-
preparation algorithm for a given superposition of multipar-
ticle states.

E. Resolving degeneracies caused by symmetry

The procedure in Sec. II D assumes that it is possible to
distinguish eigenstates based on their energy. If there are
degenerate states, additional operations are required to dis-
tinguish them. Degeneracies in quantum states usually arise
as a result of symmetry—degeneracies that do not are called
“accidental” and we treat them separately in Sec. II F. For
symmetry-caused degeneracy, distinguishing degenerate
states requires an understanding of how they transform under
the symmetry operations of the system. All of the wave func-
tions ��i	1st are eigenstates of each symmetry operation
within the point group, but degenerate wave functions will
always have different eigenvalues for at least one of the op-
erations. Phase estimation can still be used to obtain a unique
set of eigenvalues, but in addition to finding the energies, we
can distinguish the wave functions by symmetry. By apply-
ing phase estimation using an appropriate symmetry opera-
tion as the unitary operator, we obtain additional eigenvalues
to distinguish degenerate states.

Because there are only a limited number of symmetries
that are possible in physical systems, it will rarely be neces-
sary to use more than a few readout qubits to retrieve all the
distinguishing eigenvalues. With the exception of systems
with spherical, cubic, or icosahedral symmetries, which we
treat below, all systems in three-dimensional space have a
symmetry point group all of whose irreducible representa-
tions are one- or two-dimensional.33 Wave functions trans-
forming as the one-dimensional irreducible representations
are nondegenerate, while the ones transforming as the two-
dimensional irreducible representations come in degenerate
pairs. Distinguishing them, therefore, requires the determina-
tion of only one symmetry eigenvalue, which is different for
the two wave functions.

This is most easily done in the case of point groups Cnv,
C	v, Dn, Dnh, D	h, and Dnd, all of which contain a C2 axis or
a reflection plane that has character zero in all of the two-
dimensional irreducible representations. In this case, one of
the two degenerate wave functions is invariant under the re-
flection or C2 rotation, while the other acquires a phase of
�1. To distinguish them, one would use the reflection or the
C2 rotation as the unitary of phase estimation with one read-
out qubit �note that these operations are easy to implement,
being simple linear transformations�. The readout qubit,
initialized in the state ��0	+ �1	� / ��2�, would, under the
action of the symmetry operation, be converted to
��0	� �1	� / ��2�, depending on the acquired phase. A Had-
amard gate would then return �0	 or �1	, perfectly discrimi-
nating between the two eigenfunctions.

Symmetry groups Cn, Cnh, and S2n have, strictly speak-
ing, only one-dimensional irreducible representations. How-
ever, there are pairs of representations that are complex con-
jugates of each other, meaning that the corresponding energy
levels are degenerate due to time-reversal symmetry. These
pairs of conjugate representations are called “separably
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degenerate,”34 and the corresponding wave functions can be
distinguished using the principal symmetry axis Cn �or S2n in
the S2n groups�. In each case, under the action of Cn, one of
the wave functions acquires a phase � and the other ��,
where �=e2�i/n �there are also cases where the pairs acquire
phases such as −� and −��, �2 and ��2��, and so on, but
these do not change the procedure outlined here�. Phase es-
timation can, as usual, measure this phase up to a certain
precision. However, since 1 /n usually does not have a finite
binary expansion, there will be an associated error in the
phase estimation. This can be reduced below an arbitrary
threshold by the addition of more readout qubits, as dis-
cussed in Sec. IV. This is especially true since real physical
systems almost never have Cn axes with n�8, meaning that
only several qubits will be required for readout.

The cubic and icosahedral groups, T, Th, Td, O, Oh, I,
and Ih, all have three-dimensional irreducible representations
�and I and Ih also have four- and five-dimensional ones�.
Fortunately, there are plenty of reflection planes and C2 axes
which can be used for discrimination just as was done in the
simpler groups above. Distinguishing three or four degener-
ate states requires two symmetry eigenvalue comparisons
�and three in the case of fivefold degeneracy�. Consequently,
two readout qubits are required in these cases, one for each
comparison �or three qubits in the fivefold degenerate case�.

Degenerate states of spherically symmetric systems,
such as atoms, can be distinguished by energy and by their
angular momentum quantum numbers � and m�. The maxi-
mally symmetric case is the 1 /r potential, where the conser-
vation of the Laplace–Runge–Lenz vector implies that all
states with equal principal quantum number n are degenerate.
If our basis contains states with n�nmax, we would require
O�log2 nmax� qubits for the discrimination of the angular mo-
mentum states �that is, O�log2 nmax� qubits each for � and
m��. While circumstances where one encounters states of ex-
tremely high angular momentum are rare, we can see that the
discrimination can be performed efficiently. The phase esti-
mation in this case would use discrete rotations as its unitary
operator. A similar approach was suggested by Zalka for the
related problem of implementing unitary representations of
SU�2�.35

F. Resolving accidental degeneracies and
exponentially close eigenstates

In Sec. II E, we outlined a procedure for distinguishing
states that are degenerate because of symmetry. However, the
eigenstates might also be accidentally degenerate or expo-
nentially close in energy so that they cannot be efficiently
distinguished by phase estimation. In those cases, it is not
possible to distinguish between the �near-�degenerate states
using the symmetry-based procedure.

One way around these problems is to transform to an-
other basis where the �near-� degeneracy does not arise. A
way of accomplishing this is to use a perturbed Fock opera-

tor F̂�= F̂+ V̂, where V̂ is a small, efficiently simulatable per-
turbation that breaks the �near-� degeneracies. In a finite ba-

sis, V̂ must also be small to ensure that the new basis can
adequately describe the target state. The new eigenfunctions

are obtained from the old using perturbation theory, as are
the new coefficients of the state that we wish to prepare. This
change of basis can be done efficiently on a classical com-
puter, before proceeding as normal with the state preparation
algorithm. For the purposes of phase estimation, the new
Fock operator can be efficiently simulated by operator split-

ting because both F̂ and V̂ are efficiently simulatable.
A drawback of this procedure is that the perturbation

may destroy certain desirable symmetries of the system. In

some cases, this can be avoided if we choose V̂� ��i	��i�,
where ��i	 is one of the �near-� degenerate eigenstates. In that

case, F̂� and F̂ would have the same eigenstates and no
change of basis would be needed. Of course, it is possible

that V̂ in this form is not efficiently simulatable, in which
case this scheme would not be efficient.

G. Mixed states

The previous sections outline the procedure for prepar-
ing general pure states, which in the chosen basis read

��	1st = 

i

i��i	1st. �7�

From now on, we will drop the subscript 1st for clarity. We
now wish to prepare a mixed state with density operator

�̂ = 

i

pi��i	��i� ,

where ��i	 are arbitrary pure states of the form �7� and the
probabilities pi add up to 1. This scheme could be used for
the preparation of thermal states, in which case one would
choose ��i	 to be the Hamiltonian eigenstates and
pi=e−�Ei /Z, where �=1 /kBT and Z is the partition function.
Our approach to the thermalization problem is therefore dif-
ferent from that of Terhal and DiVincenzo, who prepared
thermal states by simulating an external bath.36

We assume that each ��i	 can be efficiently specified
using some specification ��i	 �for example, ��i	 is the �ith
eigenstate of the Hamiltonian�. We begin by preparing the
state 
i

�pi��i	. This can be done using the procedure in Sec.
II A if we order the �i so that they may be thought of as a
function on a one-dimensional grid. We then run the entire
state-preparation algorithm in superposition, preparing the
appropriate ��i	 conditional on the value of the ��i	. This
yields the state

��	 = 

i

�pi��i	��i	 ,

the density operator of which is

�̂� = 

i,i�

�pipi���i	��i�� � ��i	��i�� .

Tracing out the specification register, we get the desired den-
sity operator

�̂ = Tr��̂� = 

i,i�

�pipi���i	��i��Tr��i	��i�� = 

i

pi��i	��i� .

In practical terms, tracing out the specification register
amounts to doing nothing at all. That is, each ��i	 is en-
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tangled to a different ��i	, meaning that the ��i	 evolve sepa-
rately under time evolution, as they would if they were in-
dependent members of an ensemble.

One can notice that density operators diagonal in the ��i	
basis can be prepared more directly. In the previous Sec.
II D, we had to “disentangle” the first- and second-quantized
states. If we had instead simply traced out the input register,
we would have obtained a mixed state diagonal in the ��i	
basis.

III. MANY TYPES OF PARTICLES

In Sec. II, we outlined an algorithm for the preparation
of arbitrary many-particle states �pure or mixed� of a system
of identical particles. However, one often wants to consider
systems of more than one type of particle, or treat particles of
the same kind, but separated in space, as different �the latter
approach might be useful, for example, in computing elec-
tron transfer matrix elements for large molecules�.37 We con-
sider the case of two types of particles, with the generaliza-
tion to more types being clear.

One wants to prepare an arbitrary two-particle state

��	 = 

i,j

i,j��A,i	��B,j	 ,

where ��A,i	 is a many-particle eigenstate of particles of type
A and ��B,j	 is an eigenstate of particles of type B. Each
element ��A,i	��B,j	 of this superposition is easily created by
preparing the appropriate state in separate registers as was
done in Sec. II C. Creating ��	 itself can be done in analogy
to the preparation of superpositions in Sec. II D. We start by
efficiently specifying ��	 using occupation number vectors
of the ��A,i	 and the ��B,i	, namely,



i,j

i,j�nA,i	2nd�nB,j	2nd � �0A	1st�0B	1st.

We then complete the state preparation, in superposition, as
we did in Sec. II D, treating each register separately. Doing
so produces ��	.

There are many circumstances in which the ability to
prepare states such as these would be valuable. For instance,
in chemical dynamics it is necessary to treat the nuclei and
the electrons separately. If we restricted our state preparation
to simple product states such as ��A,i	��B,j	, we would get a
state in the Born–Oppenheimer approximation, which is of-
ten a good approximation to the initial states of reactants
participating in chemical reactions. However, as the proce-
dure for preparing ��	 shows, quantum computers could just
as easily prepare non-Born–Oppenheimer states in which
there is correlation between electronic and nuclear degrees of
freedom. Many-particle mixed states can likewise be pre-
pared by following the procedure in Sec. II G separately for
each type of particle.

IV. ERRORS AND THE COMPUTATIONAL COST

For the state preparation algorithm to be considered ef-
ficient, the time it takes to execute it must scale as a polyno-
mial in the sizes of the input. More precisely, it should scale
as a polynomial in l, the number of qubits used to store the

wave function and m, the number of occupied single-particle
orbitals, which is the best descriptor of the total size of the
system.

In this section, we first show that pre-existing errors are
amplified at most linearly by subsequent steps of the algo-
rithm. We then use this fact to obtain the total computational
cost of preparing an arbitrary quantum state.

A. Errors

Assuming that the quantum gates are executed
perfectly—or that the gate errors are corrected using efficient
error correction algorithms—there are five sources of error in
the state preparation algorithm.

1. Preparation of single-particle eigenstates

Zalka’s method that we adopted in Sec. II A requires
evaluation of the integrals �1�. We addressed the computa-
tional cost of integral evaluation in Sec. II B, where we show
that the procedure can be accomplished in time polynomial
in �I

−1 if the wave function’s indefinite integral is known or,
more generally, if the wave function is bounded. The result-
ing error in the prepared single-particle eigenstate is
��� l�I /2.

2. Assembly of many-particle eigenstates

Many-particle eigenstates �3� inherit the errors present in
the single-particle eigenstates ��i	 that are used to assemble
them. Supposing that the prepared states ��̃i	 approximate
the true states ��i	 with error ��,i=1− ���̃i ��i	�, then the pre-

pared Hartree product ��̃ j1
¯ �̃ jm

	 suffers an error

�� = 1 − ���̃ j1
¯ �̃ jm

�� j1
¯ � jm

	�

= 1 − �
i=1

m

�1 − ��,ji
� � 


i=1

m

��,ji
� m�� � ml�I/2,

where ��=max ��,i. Since the total error grows as a polyno-
mial in both the single-state error and the number of occu-
pied states, the assembly of Hartree products amplifies the
pre-existing errors only linearly in m. The remaining step,
the antisymmetrization of the Hartree product, does not in-
troduce additional errors.

3. Preparation of superpositions

The parallel state preparation that is used to perform
transformation �6� does not introduce any additional errors
with the exception of the possible failures of phase estima-
tion, discussed below. Nevertheless, we should see how pre-
existing errors propagate through this step. If the prepared

state is ��̃	=
ii��̃i	, we see that it suffers an error with
respect to the target state

�� = 1 − 

i

�i�2���̃i��i	�

= 1 − 

i

�i�2�1 − ��,i� � �� � ml�I/2,

where ��=max ��,i and we assumed that ��̃i �� j	=0 for
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i� j. In other words, the error in ��̃	 is limited by the error
of its components.

4. Discrimination of states in a superposition

The preparation of superpositions described in Secs.
II D–II F and III relies on phase estimation as a means of
distinguishing states. Since the eigenenergies will rarely have
finite binary expansions, there will be errors introduced at
this step. If two phases differ at the nth bit and we perform
phase estimation with q=n+ p qubits, the probability of an
incorrect identification is 1 /2�2p−2�, meaning that the suc-
cess probability will be 1−�PE provided we implement phase
estimation with p= �log�2+1 /2�PE�� additional qubits.11 The
additional overhead, logarithmic in �PE

−1, does not compro-
mise the efficiency. The same arguments apply to the phase
estimation of eigenvalues of Cn belonging to states in sepa-
rably degenerate irreducible representations of groups Cn,
Cnh, and S2n �see Sec. II E�. The symmetry eigenvalues that
are useful for states in the other point groups are always �1
and can be perfectly resolved using phase estimation with a
single readout qubit.

In addition, failures of state discrimination based on
phase estimation can be detected after the state preparation is
complete. The second-quantized register, which should be
uncomputed during the procedure, should be measured at the
end. If �0¯	 is observed, phase estimation will have suc-
ceeded. Otherwise, a misidentification will have occurred,
and the procedure ought to be repeated. This simple, classi-
cal error correction introduces only a constant overhead and
ensures that phase estimation does not contribute to the error
in the final prepared state.

5. Assembly of mixed states

In the notation of Sec. II G, if the prepared states ��̃i	
approximate the true states ��i	 with an error

��,i=1− ���̃i ��i	�, and assuming perfect preparation of the
state 
i

�pi��i	, the final prepared mixed state will be

�̂̃=
ipi��̃i	��̃i�. If we assume that ��̃i �� j	=0 for i� j, then

�̂̃ suffers an error11

�� = 1 − Tr���̂̃�̂��̂̃�1/2

= 1 − Tr�

i

pi
2��̃i	��̃i��i	��i��̃i	��̃i�1/2

= 1 − 

i

pi�1 − ��,i� � �� � ml�I/2,

where ��=max ��,i. That is, the assembly of mixed states
does not magnify the pre-existing errors.

Overall, we see that errors introduced in any stage of the
state preparation algorithm are not amplified more than poly-
nomially by subsequent stages. The final error in the pre-
pared state is �=���ml�I /2, meaning that the error scales
linearly with the size of the system m and the error of the
integration procedure, as well as logarithmically with the
grid size 2l.

B. Computational cost

There are three time-consuming steps in the state prepa-
ration algorithm. The first is the evaluation of the integrals
�1� and the resulting single-qubit rotations, the second is the
phase estimation used to distinguish states in the superposi-
tion �see Sec. II D�, and the final is the antisymmetrization
procedure described in Sec. II C. We characterize the cost of
each step in turn.

In the previous section, we have seen that the total error
of the prepared state will be ��ml�I /2. Therefore, if we
want to ensure a maximum error �, we must choose
�I=2� /ml, implying that O�ml�−1� time is required for each
integration �see Sec. II B�. The integration procedure itself is
called ml times: for each of the m occupied orbitals, l qubits
have to be rotated correctly. Therefore, the total time re-
quired for all the qubit rotations is O�m2l2�−1�.

The cost of the phase-estimation procedure that is used
to distinguish the eigenstates cannot be given precisely be-
cause we have not made any assumptions about the nature of

the Fock operator F̂ other than that it is efficiently simulat-
able, that is, running in time poly�m ,M , l ,�−1� �here, � is
the precision at which the simulation needs to be run, i.e., it
is half the gap between the closest two eigenstates, which we
assumed is not exponentially small�. Simulating the entire
Hartree–Fock Hamiltonian requires the simulation of the
Fock operator acting separately on each particle, meaning
that the total simulation requires mpoly�m ,M , l ,�−1� time. In
addition to this, two QFTs are required on the readout regis-
ter of the phase estimation. If q qubits are used for the read-
out �see Sec. IV A�, the QFTs require O�q2� time. It should
be noted that the required q is determined only by needed
precision in the phase estimation and that it does not depend
strongly on m, l, or M. Therefore, the cost of the QFTs can
be treated as essentially a constant overhead. Furthermore,
there is the cost of looking up the state’s energy in the
look-up table; a simple binary search requires O�log2 M�
time per register, for a total cost of O�m log2 M�. However
this, too, is a negligible cost in comparison to
mpoly�m ,M , l ,�−1�, which we conclude is the asymptotic
cost of the eigenstate discrimination portion of the state
preparation algorithm.

The bottleneck of the antisymmetrization procedure used
to produce fermionic states �or the symmetrization for
bosonic ones� is the sort that takes state �4� to state �5�.
Sorting register B by a comparison sort requires ��m log m�
swaps. These swaps must also be performed on each of the
corresponding l qubits of register A, for a total cost of
��lm log m�. For large systems, this expression will be
dominated by the scalings of the integral evaluation and the
phase estimation.

Based on the foregoing, the total computa-
tional cost of the state preparation algorithm is
O�m2l2�−1+mpoly�m ,M , l ,�−1��=poly�m ,M , l ,�−1 ,�−1�, an
expression polynomial in all the basic descriptors of the sys-
tem. This allows us to conclude that the algorithm, as de-
scribed above, is efficient.
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V. CONCLUSION

We outlined a quantum algorithm for the preparation of
physically realistic quantum states on a lattice. In particular,
we have gone beyond previous proposals by describing a
method for preparing any pure or mixed state of any number
of particles. This is achieved by using Zalka’s method for
preparing single-particle states and then combining those
into many-particle states. The assembly of many-particle
states requires that we be able to distinguish them on a quan-
tum computer, a task that we address using phase estimation.
We also provided symmetry-based solutions for degenerate
cases, where phase estimation using a single operator is in-
sufficient to distinguish the states. Accidentally degenerate
states can be distinguished by adding a perturbation to the
system Hamiltonian. Our algorithm is efficient, with a run
time of poly�m ,M , l ,�−1 ,�−1�, subject only to the require-
ments that the wave function be bounded or that its indefinite
integral be known and that the Fock operator be efficiently
simulatable.
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