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Quantum computers, if available, could substantially accelerate quantum simulations. We extend
this result to show that the computation of molecular properties !energy derivatives" could also be
sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of
molecular properties, whose time cost is a constant multiple of the time needed to compute the
molecular energy, regardless of the size of the system. Molecular properties computed with the
proposed approach could also be used for the optimization of molecular geometries or other
properties. For that purpose, we discuss the benefits of quantum techniques for Newton’s method
and Householder methods. Finally, global minima for the proposed optimizations can be found
using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost
over classical multi-start techniques. © 2009 American Institute of Physics.
#doi:10.1063/1.3266959$

Applying ab initio methods of quantum chemistry to
particular problems often requires computing derivatives of
the molecular energy. For instance, obtaining a molecule’s
electric properties relies on the ability to compute derivatives
with respect to external electromagnetic fields. Likewise,
computing the gradient of the molecular energy with respect
to the nuclear coordinates is the most commonly used
method for the proper characterization of potential energy
surfaces and for optimizing the geometry of all but the small-
est molecules. The computation of these kinds of derivatives,
known as molecular properties, is nowadays a routine matter
when it comes to low-order derivatives or small systems !or
both". This is largely due to advances in analytical gradient
techniques, which allow for explicit property evaluation
without resorting to numerical differentiation.1–8

Nevertheless, the computation of higher-order deriva-
tives is often prohibitively expensive, even though such de-
rivatives are often needed. For example, third- and fourth-
order anharmonic constants are sometimes required to
accurately compute a vibrational absorption spectrum4 or ef-
ficiently determine the location of transition states on com-
plex potential energy surfaces.7 Other properties of interest,
such as hyperpolarizabilities, Raman intensities, or vibra-
tional circular dichroism, are also cubic or quartic deriva-
tives. In this report, we show that quantum computers, once
available, will be able to bypass some of the high cost of
computing these properties. In particular, we show that any
molecular property can be evaluated on a quantum computer
using resources that, up to a small constant, are equal to
those required to compute the molecular energy once. We
have previously characterized the advantage of quantum
computers at both computing molecular energies9,10 and
simulating chemical reaction dynamics,11 and the present
work extends our program to molecular properties.

This paper begins with a brief overview of classical
techniques for the evaluation of molecular properties, both
numerical and analytical. We then introduce the quantum al-
gorithm for molecular properties, and discuss its advantages
and disadvantages with respect to classical techniques. We
conclude with geometry optimization as a particular ex-
ample, and we show that it can benefit from an additional
quadratic speed-up through Grover’s search.12

I. THE CLASSICAL METHODS

Given an external perturbation !, the total molecular
electronic energy can be expanded in a Taylor series

E!!" = E!0" + !⊤E!1" + 1
2!⊤E!2"! + ¯ , !1"

where the coefficients E!n" are called the molecular proper-
ties and describe the response of the system to the applied
perturbation.8 We consider time-independent properties,
which can be obtained by differentiating the energy at !=0,

E!n" = % dnE

d!n%
0
. !2"

Many examples of useful derivatives can be given. For in-
stance, the derivatives with respect to the electric field F are
the permanent electric dipole, the static polarizability, and
the static hyperpolarizabilities of various orders
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dF3%
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where the subscript denotes differentiation at F=0. The de-
rivatives with respect to nuclear coordinates R include the
forces on the nuclei and the force constants, while mixed
derivatives can provide information such as Raman
intensities.3

On a classical computer, an energy derivative can be
evaluated either numerically or analytically, and we discuss
each approach in turn.
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Numerical derivative techniques rely on computing the
value of the energy at several discrete points, and then using
those values to estimate the true derivative. The simplest
technique is finite difference, which for the first derivative in
one dimension is the familiar formula,

% dE

d!
%

0
&

E!h" − E!0"
h

. !4"

In d dimensions, computing the gradient requires at least
d+1 evaluations of the energy, once at the origin and once at
a distance h along each axis !Fig. 1". Similarly, evaluating
higher-order derivatives requires the knowledge of the en-
ergy on a particular grid, with at least dn+1 points for the nth
derivative.

While numerical gradient techniques usually require
minimal effort to implement, they are occasionally suscep-
tible to numerical instability, due to the ill-posedness of nu-
merical differentiation in general.13 This is particularly prob-
lematic when using finite-precision arithmetic, where various
rounding errors can accumulate and be amplified upon divi-
sion by the small number h. The fact that small errors in the
evaluated function can lead to large errors in the derivative
affects ab initio electronic structure methods insofar as they
usually involve long calculations with many potential
sources of error, including rounding and quadrature.

By contrast, analytical derivative techniques are those
that compute the derivative by direct evaluation of an ana-
lytical expression. The formulas were derived by Bratož1 and
first implemented in quantum chemistry by Pulay.2 Analyti-
cal techniques have since largely supplanted numerical pro-
cedures because they are numerically more stable and, more
importantly, usually faster as well.

Analytical gradient formulas exist for most electronic
structure techniques and for most kinds of perturbations. To
illustrate the argument and establish the correct scaling, we
will describe the analytical derivatives of fully variational
wave functions !this is not a restriction: wave functions such
as coupled-cluster can be made fully variationally by adding
a suitable Lagrangian to the energy". We start by writing the
molecular energy as a function E!! ,$!!"" of the external
perturbation ! and the wave function parameters $!!".
These parameters, such as the configuration interaction coef-
ficients, completely describe the electronic wave function.
Although $!!" is a function of !, for simplicity we will
write only $. The energy is said to be fully variational with
respect to $ if, for any given !, $ assumes the value $! such
that the variational condition holds

% #E!!,$"
#$

%
!

= 0 , !5"

where ! indicates $=$!. In that case we can write E!!"
=E!! ,$!".

For fully variational wave functions, the gradient with
respect to ! is given by
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where we have used the variational condition and the
Hellman–Feynman theorem. Since one need not know the
first-order wave function response #$Õ#!, computing the
gradient is, to within a small constant factor,7 as hard as
computing the energy. That is, once ($!) is available, calcu-
lating the expectation value of the Hamiltonian has approxi-
mately the same computational cost as calculating the expec-
tation value of its derivative. However, computing the
second derivative matrix does require the knowledge of the
first-order wave function response. In fact, as a direct conse-
quence of Wigner’s 2n+1 rule of perturbation theory, one
needs to know the first n wave function responses in order to
calculate the !2n+1"th derivative. Computing the responses
often becomes the bottleneck, and it is what leads to a higher
asymptotic cost of higher-order derivatives. While the gradi-
ent requires about the same resources as the energy, the sec-
ond and third derivatives require resources that scale as O!d"
times the cost of computing the energy !where d is the num-
ber of degrees of freedom, i.e., the dimension of !".7 This
scaling comes about because O!d" time is required to com-
pute the matrix #$Õ#!. Likewise, the scaling of the !2n
+1"th derivative is O!dn", because the bottleneck becomes
the computation of the nth order wave function response. In
other words, the computational cost of finding the nth ana-
lytical derivative is O!d⌊n/2⌋", roughly a quadratic speed-up
over the O!dn" numerical methods of the same degree.

It should be noted that the scaling of derivative tech-
niques, both numerical and analytical, depends on d. For
some classes of useful properties, this is not a concern be-
cause d is independent of system size. For example, if the
perturbation is the electric field, then d=3, and indeed there
are classical techniques for computing electrical properties of
large molecules. However, in cases where d varies with sys-
tem size, as it does whenever there is differentiation with
respect to nuclear coordinates, larger systems become in-
creasingly difficult to treat. This is most acutely true of the
molecular Hessian, which is often beyond reach, even
though the gradient is routinely accessible. We now show
that if quantum computers were available, the cost of the
higher derivatives would no longer be prohibitive.
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FIG. 1. Obtaining a numerical gradient of a function defined on a
d-dimensional space classically requires sampling the function d+1 times,
once at the origin and once at a distance h along each of the axes. Shown
above are the sample points for the cases d=1 through d=3. The quantum
gradient algorithm can evaluate many sample points in superposition, pro-
ducing the same calculated gradient using only one call to the function.
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II. THE QUANTUM ALGORITHM

The quantum algorithm for molecular properties is based
on Jordan’s quantum gradient estimation algorithm.14

Jordan’s method can numerically compute the gradient of
any function F, given a black box !oracle" that computes the
value of F for an arbitrary input. In particular, the algorithm
can evaluate the gradient using a single query to F, regard-
less of the number of dimensions d of the domain of F. By
contrast, the simplest classical finite-difference scheme
would require d+1 queries to F !see Fig. 1". The speed-up is
essentially achieved by being able to sample along all the d
dimensions in superposition. We apply Jordan’s algorithm to
the computation of molecular properties by specifying a way
to compute the energy on a quantum computer as well as by
outlining how to obtain higher derivatives. In this section, we
describe the algorithm, its application to quantum chemistry,
and finally argue that a return to numerical techniques for
molecular properties would be justified if quantum comput-
ers became feasible.

We assume that the molecular energy is a smooth,
bounded function of the perturbation, E : #−h /2,h /2$d

→ #Emin,Emax$, where a small h is chosen so that E varies
sufficiently slowly over the domain. For convenience, we
express the perturbations in units such that h is unitless and
such that the bounds are the same along all of the axes. We
also assume that we have a black box for E, which, given a
perturbation !, outputs the energy E!!". The precise nature
of the algorithm inside the black box is not important, so
long as it can be implemented on a quantum computer. In
particular, any classical technique of electronic-structure
theory can be converted into a quantum algorithm.15 In Sec.

III, we will discuss possible realizations of the black box,
including the use of quantum simulation algorithms, which
offer a significant improvement over classical ones.

We begin by choosing the number n of bits of precision
that we desire in the final gradient. Jordan’s algorithm starts
in an equal superposition on d registers of n qubits each !nd
qubits total" !Ref. 15",

1
*Nd +

k1=0

N−1

¯ +
kd=0

N−1

(k1) ¯ (kd) =
1

*Nd+
k

(k) , !7"

where N=2n, the states (ki) are integers on n qubits repre-
sented in binary, and (k) is a d-dimensional vector of all the
(k)’s.

We use this state as an input for the black box for E,
which will, for every integer-vector (k) in the superposition,
append a phase proportional to the energy E!!" at perturba-
tion !=h!k−N /2" /N !where N is the vector !N ,N , . . . ,N"
and serves to center the sampling region on the origin". To
achieve maximum precision with fewest qubits, one needs an
estimate m of the largest magnitude of any of the first de-
rivatives of E. Then, the energy evaluated by the black box is
scaled by a factor 2"N /hm. Because the black box operates
on all the terms in the superposition at once, a single call
results in the state

1
*Nd+

k
exp,2"iN

hm
E- h

N
!k − N/2"./(k)

&
1

*Nd+
k

exp,2"iN

hm
-E!0" +

h

N
!k − N/2" · % dE

d!
%

0
./(k) .

!8"

The neglect of terms quadratic in h and higher is a valid
approximation for sufficiently small h !the error caused by
higher-order terms is discussed in Ref. 14 and is only poly-
nomial". The final state is separable and equals

ei#!0"

*Nd +
k1=0

N−1

exp,2"i

m
k1% #E

#!1
%

0
/(k1) ¯

+
kd=0

N−1

exp,2"i

m
kd% #E

#!d
%

0
/(kd) , !9"

with phase

#!0" = 2"- N

hm
E!0" −

N
2m

· % dE

d!
%

0
. . !10"

Applying the inverse quantum Fourier transform15 to
each of the d registers results in the gradient

ei#!0"%%N

m

#E

#!1
%

0
0¯ %%N

m

#E

#!d
%

0
0

= ei#!0"%%N

m

dE

d!
%

0
0 . !11"

The scaling factor !N /m" ensures that N /m!dE /d!" is an
integer-vector with n bits of precision along each dimension.
It should be reiterated that a single call to E was made, as

TABLE I. Time resources required by various techniques of computing
molecular properties, in terms of the cost of computing the energy. For
example, the entry d+1 means that computing the property requires d+1
evaluations of the molecular energy, while the entries in the “Analytical”
column indicate comparable computational effort. E is the total electronic
energy, ! is the external perturbation, and d is the dimension of !. All the
derivatives are evaluated at !=0. On classical computers, the numerical
scalings correspond to the simplest finite-difference scheme. Analytical
techniques are the ones that evaluate the derivative directly !the exponent
⌊n /2⌋ comes from Wigner’s 2n+1 rule". On a quantum computer, the quan-
tum gradient estimation algorithm is used. It should be noted that on a
quantum computer, the number of evaluations of E needed for any deriva-
tive is independent of d, and thus of the size of the system.

Derivative

Classical Quantum

Numerical Analytical Numerical

dE

d!
d+1 O!1" 1

d2E

d!2
d2+1 O!d" 2

d3E

d!3
d3+1 O!d" 4

] ] ] ]
dnE

d!n
dn+1 O!d⌊n/2⌋" 2n−1
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opposed to the d+1 that would be needed in the case of
numerical differentiation by finite difference.

Overall, the gradient estimation algorithm produces the
transformation

(0) → ei#!0"%%N

m

dE

d!
%

0
0 . !12"

We can compute the Hessian !and higher derivatives" by it-
erating this algorithm. If, instead of making a call to E!!",
the algorithm sought E!!−%" from the black box, we would
perform, at the cost of this single additional subtraction,

(0) → ei#!%"%%N

m

dE

d!
%

%
0 , !13"

with global phase

#!%" = 2"- N

hm
E!%" −

N
2m

· % dE

d!
%

%
. . !14"

Because this procedure will be used as a subroutine, the glo-
bal phase will become a relative phase. To avoid undesired
interference, it is important to remove !or uncompute" the
phase; one additional evaluation of E !at %" suffices for this
uncomputation. Overall, this supplies another black box,
which, given %, yields (!N /m"!dE /d!" (%) using only two
calls to the original black box for E. One can use the gradient
algorithm with this new black box, producing the state

ei#!2"!0"%% N

m!2"
d2E

d!2%
0
0 , !15"

which is a two-dimensional array of d2 quantum registers
containing all the elements of the Hessian matrix of E. In
addition, m!2" is an estimate for the magnitude of the largest
second derivative, and the phase is

#!2"!0" = 2"-% N

hm!2"
dE

d!
%

0
−

N
2m!2" · % d2E

d!2%
0
. . !16"

Computing higher derivatives would require additional
factors of two in the number of required black box calls,
caused by the need to uncompute a global phase at each step
!this problem is common when it comes to recursing quan-
tum algorithms16". Hence, evaluating the nth derivative re-
quires 2n−1 queries to E, which, although exponential in n, is
much better than dn+1, which is the minimum number of
function queries required to compute the derivative by clas-
sical finite difference. We stress that the number of calls to E
is independent of d, and thus of the size of the system, for the
derivative of any order.

The quantum gradient algorithm is a numerical approach
and therefore, just like classical numerical techniques, it
could be affected by numerical instability. This implies that
the gradient algorithm cannot be used indiscriminately for
problems that feature errors that cannot be controllably re-
duced through additional computational effort. For example,
finite-precision arithmetic presents the same problems to
quantum computers as it does to classical ones, but the
rounding errors can be brought under control by using more
digits of precision !as on classical computers". Quantum
chemistry techniques might present numerical problems as

well, insofar as they contain uncontrolled sources of error.
However, if the technique for computing the energy is nu-
merically exact, that is to say, if the error in the energy can
be controllably reduced below any level, the magnitude of
the numerical error in the calculated derivative can likewise
be made arbitrarily small. Fortunately, quantum computers
would make it possible in principle to evaluate the numeri-
cally exact molecular energy, meaning that numerical insta-
bility would not be a problem. We turn to the topic of mo-
lecular energy evaluation next.

III. THE BLACK BOX FOR THE ENERGY

The application of Jordan’s gradient algorithm to chemi-
cal problems requires a black box that can compute the value
of the ground-state molecular energy at any value of the
perturbation ! in the neighborhood of !=0. Furthermore, to
avoid numerical artifacts, this black box should be numeri-
cally exact, allowing the error in the energy to be controlla-
bly reduced through additional computational work.

We stress that any electronic-structure method could be
used inside this black box. In particular, any one of the many
well-developed classical electronic-structure techniques
could be implemented on a quantum computer, allowing one
to take advantage of the decreased query complexity. How-
ever, to take full advantage of the quantum computer, the
energy black box could also be a quantum algorithm. This
could potentially avoid the steep computational cost of exact
classical electronic-structure methods, which scale exponen-
tially with the size of the system. In the remainder of this
section, we give some details of what a quantum black box
might look like, although, again, the precise details of the
black box do not matter for the rest of the paper.

Finding the ground-state energy on a quantum computer
can be divided into two steps: preparing the ground state
!encoded in some way", and then measuring its energy.

The computational cost of the first step, preparing the
ground state of chemically relevant systems, is not well
known. For general physical systems, and frustrated spin
Hamiltonians in particular, finding the ground state is
QMA-complete17 and therefore widely believed to require
superpolynomial time, even on a quantum computer. All
known algorithms for the ground-state energy of general
Hamiltonians require exponential time, . However, numerical
evidence suggests that it might be possible to prepare ground
states of certain chemically relevant systems in polynomial
time using adiabatic state preparation.9

The second step, energy measurement, is relatively easy,
and can be accomplished on a quantum computer using the
phase estimation algorithm.15,18,19 Its cost depends on the
way the wave function is encoded, but is generally polyno-
mial in the size of the system, at a given accuracy. Chemi-
cally relevant wave functions can be encoded in two ways:
second or first quantization.

In a second-quantized approach, the quantum computer
stores the occupation-number vectors in a chosen basis set,9

meaning that the black box is essentially a quantum version
of full configuration interaction !FCI". In this case, phase
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estimation for determining the energy to a given precision
requires O!M5" time,20 where M is the number of basis func-
tions.

An alternative is a first-quantized representation, in
which wave functions are encoded on grid in real
space.11,21–23 Performing phase estimation in this case re-
quires simulating the dynamics of the relevant chemical sys-
tem. For P particles interacting under a pairwise interaction,
the exact dynamics can be simulated in O!P2" time and O!P"
space, in contrast to the classical exponential cost. Although
the large prefactor of this algorithm would make it slower for
small molecules than the equivalent quantum FCI calcula-
tion, it benefits from a superior asymptotic scaling as well as
from the fact that only minimal modifications would need to
be made to insert the perturbation ! into the calculation. For
example, simulations with different nuclear coordinates pro-
ceed in exactly the same way, while an electromagnetic field
requires only a small modification of the simulated
Hamiltonian.21

Phase estimation, the crucial ingredient of these algo-
rithms, has been criticized as inefficient24 because its cost
grows exponentially with the number of bits of precision
sought. This could be significant for gradient estimation,
which might require precise energy evaluations to avoid nu-
merical errors. We note that if the gradient is desired to n bits
of precision #as in Eq. !11"$, the black box needs to evaluate
the energy to

nE = log2, Emax − Emin

!mh/2n"!$/2""/ & n + log2
2"

$
, !17"

bits of precision,14 where cos2 $ is the desired success prob-
ability of the algorithm. For example, with $=" /8, the algo-
rithm succeeds 85% of the time and requires four more digits
of precision in the energy than is desired in the gradient. The
four additional digits present only a constant additional over-
head, meaning that the computation of any molecular prop-
erty at any precision is, up to a constant factor, as hard as
computing the energy of the same molecule at the same pre-
cision.

IV. NEWTON’S METHOD AND GEOMETRY
OPTIMIZATION

Perhaps the single most common use of molecular de-
rivatives is molecular geometry optimization. We can there-
fore use it to illustrate some of the advantages of a quantum
algorithm over a classical one, including a quantum version
of Newton’s method, which offers an additional quadratic
speedup over its classical counterpart.

A simple way for finding the locally optimal geometry is
to perform the standard Newton iterations,

Rn+1 = Rn − -% dE

dR
%

Rn

. · -% d2E

dR2%
Rn

.−1

, !18"

until convergence is reached. Here, Rn are the nuclear coor-
dinates at the nth iteration, and dE /dR (Rn

and d2E /dR2 (Rn
are, respectively, the gradient and Hessian of E with respect
to nuclear displacement !the “molecular gradient” and the
“molecular Hessian”". If a quantum computer were used to

compute the derivatives, one would require exactly three
calls to the energy black box per iteration: one for the gradi-
ent and two for the Hessian. A classical approach, on the
other hand, would be much slower, requiring at least d2+1
function calls for finite difference, and approximately O!d"
effort in the analytical case. For a molecule with N nuclei,
d=3N, which means that this improvement in query com-
plexity would be most significant in the case of large mol-
ecules.

We do not consider here quasi-Newton methods or sim-
pler methods such as gradient descent, which, classically,
offer the advantage of not needing to compute the molecular
Hessian at each step, or at all. While such schemes are useful
and widely applied, they are typically slower or, for a given
number of steps, less accurate than Newton’s method. On a
quantum computer, their classical computational savings
would be superceded by the ability to rapidly compute the
exact Hessian at each step.

There are many classical tricks available for speeding up
the convergence of Newton’s method if the initial guess is
not close to a local minimum, in which case the usual
Newton step might be inappropriately large. Techniques such
as trust regions and level shifts25 are still available to quan-
tum computers, or they can be implemented as classical post-
processing.

In addition, we remark that Newton’s method is the first
in the class of Householder methods, which offer a rate of
convergence of !+1, provided that derivatives up to order
!+1 exist and can be calculated. A quantum computer could
be used to accelerate Householder methods of any degree,
requiring +m=1

!+1 2m−1=2!+1−1 calls to the black box for
order-! Householder optimization method. Although expo-
nential in !, this expression is independent of system dimen-
sion d.

Of course, Newton’s method is only useful for local
minimization, and we are often interested in global optimi-
zation. Here, we can use a quantum version of the multistart
technique, called the quantum basin hopper.26–29 A number
of points is selected at random, and each is followed, using a
local search, to its local basin !if a quantum version of New-
ton’s method is used for the local search, such as the one we
propose above, we can get the usual quadratic convergence".
Then, the minima of all the basins are compared and the least
one chosen as the global minimum. Quantum computers
could add a quadratic speed-up to such a multistart tech-
nique, since the resulting local minima form an unstructured
database that can be searched using Grover’s algorithm12,15

with a quadratic speed-up. As Dürr and Høyer pointed out,30

a Grover search can find the minimum of an unstructured
database with O!*K log K" calls to the database !where K is
the number of database entries, i.e., multistart points", as
opposed to the classically required O!K log K" queries.

V. CONCLUSION

We have shown that Jordan’s quantum gradient estima-
tion algorithm can be applied to the estimation of time-
independent, non-relativistic molecular properties. Doing so
requires a quantum electronic-structure black box, for which
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known quantum simulation algorithms are well suited. The
quantum algorithm offers a speed-up from the classical cost
of O!d⌊n/2⌋" for analytical derivatives to the quantum query
complexity of 2n−1 !Table I". That is, the number of energy
calculations required on the quantum computer is indepen-
dent of d, and thus of the system size, which could offer a
significant advantage for the computation of properties of
large systems. In particular, it would make the molecular
Hessian of any molecule only twice as expensive as its mo-
lecular gradient, enabling a fast, local geometry optimization
using Newton’s method. Finally, global optimization could
combine the local Newton’s method with Grover search to
offer an additional quadratic speed-up over the classical
multi-start technique.

An avenue for future work is investigating whether there
are quantum versions of analytical gradient techniques. It is
possible that such algorithms could outperform the numerical
methods outlined here, for example by not requiring the
computationally expensive recursion.
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