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Abstract. Noise-assisted transport in quantum systems occurs when quantum
time evolution and decoherence conspire to produce a transport efficiency that
is higher than what would be seen in either the purely quantum or purely
classical cases. In disordered systems, it has been understood as the suppression
of coherent quantum localization through noise, which brings detuned quantum
levels into resonance and thus facilitates transport. We report several new
mechanisms of environment-assisted transport in ordered systems, in which there
is no localization to overcome and where one would naively expect that coherent
transport is the fastest possible. Although we are particularly motivated by the
need to understand excitonic energy transfer in photosynthetic light-harvesting
complexes, our model is general—transport in a tight-binding system with
dephasing, a source and a trap—and can be expected to have wider application.
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Recent experimental studies of photosynthetic light-harvesting complexes have confronted us
with the fact that at least some of these systems exhibit excitonic coherence that is surprisingly
long considering their noisy environment [1–3]. This makes it clear that if we are to understand
their high light-harvesting efficiency, we must study the ways in which quantum transport is
affected by the interplay of coherence and noise [4–21]. It has been found that noise can enhance
quantum transport in model excitonic Hamiltonians [4–6], a phenomenon called environment-
assisted quantum transport (ENAQT) or decoherence-assisted transport.

In the simplest approach, different environments around each chromophore lead to a tight-
binding model with sites that have different energies (disorder). Because of disorder, the exciton
becomes localized through coherent phenomena such as destructive interference or Anderson
localization [4, 5, 8, 11]. ENAQT is then simple to understand: noise can destroy the coherent
localization, helping the exciton reach the trap site and increasing the efficiency. Alternatively,
decoherence has been described as fluctuations of site energies which can transiently bring
levels into resonance, facilitating transport.

If these interpretations were the whole story, ENAQT would be impossible in ordered
systems, those without energetic disorder. The absence of ENAQT in ordered linear chains was
predicted at least twice: for example, Cao and Silbey predict ‘the lack of environment-assistance
in linear-chain systems’ [12], while Plenio and Huelga note ‘the expectation that noise does not
enhance the transport of excitations’ in uniform chains [5]. This expectation is strengthened by
proofs of the impossibility of ENAQT in end-to-end transport in ordered chains [5, 12]. We
revisit the ordered chain and show that the case of end-to-end transport is the only case where
ENAQT is impossible: its absence in end-to-end transport is the rare exception that we are able
to explain. We anticipate that these findings will shed light on the efficiency of transport in
ordered excitonic systems, whether artificial, such as J-aggregates, or natural, such as the LHII
complex in purple bacteria and the chlorosome in green sulfur bacteria.

Results related to ours were reported by Gaab and Bardeen [6]. They considered ordered
systems and noted that the environment can sometimes enhance the ‘effective trapping rate’. By
contrast, we focus on the trapping efficiency, a measure of how often the exciton is productively
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trapped as opposed to lost, regardless of how fast the transport is (loss is not modelled in [6], so
the efficiency is always 1). We do not average over initial sites, which allows us to explain the
absence of ENAQT in end-to-end transport.

1. The model and definition of environment-assisted quantum transport (ENAQT)

The ordered system we consider is a one-dimensional array of N identical sites, coupled to their
nearest neighbours and described by the Hamiltonian

H0 = V
N�1X

m=1

(|mihm + 1| + |m + 1ihm|) , (1)

where V is the coupling strength and h̄ = 1. This Hamiltonian is equivalent to a system of
coupled two-level systems that is restricted to the single-excitation sector.

To study the efficiency of transport mediated by this Hamiltonian, we introduce two distinct
attenuation mechanisms. Firstly, the particle is irreversibly lost from each site at an equal rate µ,
modelling processes such as exciton recombination. Secondly, at a particular trap site |⌧ i, the
particle can be trapped at a rate  , modelling, for example, the transfer of an exciton to a
photosynthetic reaction centre. These attenuation mechanisms are incorporated by adding a
non-Hermitian part to the Hamiltonian,

Hatten = �iµ
X

m

|mihm| � i |⌧ i h⌧ | . (2)

Loss and trapping both result in particle disappearance and have the same mathematical form;
the distinction is that we consider the energy carried by lost particles to be unavailable and the
trapped energy to be productively useable. The norm of the state at time t is the probability that
the particle will survive that long.

The attenuation mechanisms continuously reduce the particle’s survival probability, so that
after a sufficiently long time, t � µ�1, the probability of finding the particle is negligible. If ⇢(t)
is the system’s density matrix at time t , the probability of trapping the particle in the interval
[t, t + dt] is 2 h⌧ |⇢(t)| ⌧ i dt . The efficiency of transport, for the initial state ⇢(0), is then the
overall trapping probability,

⌘ = 2

Z 1

0
h⌧ |⇢(t)|⌧ i dt. (3)

Likewise, the probability of loss is ⌘0 = 2µ
P

m

R 1
0 hm|⇢(t)|mi dt = 2µ

R 1
0 tr ⇢(t) dt and these

branching ratios satisfy ⌘ + ⌘0 = 1.
Environmental effects are modelled as (Markovian) pure dephasing, acting independently

on all sites with an equal rate � . We choose dephasing because it is one of the simplest forms of
noise, giving us a single-parameter minimal model that exhibits the desired behaviour. Insofar
as dephasing is the appropriate limit of several more realistic noise models, we can expect
qualitatively similar effects if more complicated environments are considered. The dephasing
superoperator D is defined through (D⇢)nm = �2� (1 � �nm) ⇢nm and the resulting complete
equation of motion is

⇢̇ = L⇢ = �i
�
H⇢ � ⇢H †� +D⇢, (4)

where the total Hamiltonian is H = H0 + Hatten. We note that this master equation has been
solved exactly for the case  = µ = 0 both in the single-particle situation [22, 23] and in the
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(a)

(b)

Figure 1. Definition of ENAQT. (a) Three-site chain with the initial site |2i
and the trap site |1i. (b) Transport efficiency ⌘ in the three-site chain, with the
trapping rate  = 0.1 and the loss rate µ = 0.01. ⌘ is maximized at the optimal
dephasing rate �opt = 0.319. ENAQT is the magnitude of the enhancement,
⇠ = ⌘max � ⌘0 or in this case, ⇠ = 0.038.

non-equilibrium setting for many particles [24, 25]. In the following, we give a method for the
exact (single-particle) solution for any chain length and any  and µ, allowing us to calculate
the efficiency.

The coupling V sets the energy scale, so we can take V = 1. Then, at every choice of loss
and trapping rates µ and  , the efficiency ⌘ is a function of the dephasing rate � , see figure 1(b).
We observe that if � is very large, the particle will be localized at its initial site due to the Zeno
effect. Therefore, it will not be able to reach the trap before it is lost, meaning that ⌘ ! 0 as
� ! 1. Consequently, the maximum transport efficiency ⌘max will occur at a finite �opt > 0.
ENAQT occurs if �opt > 0 and is defined as

⇠(µ, ) = ⌘max � ⌘0. (5)

We can now consider efficiency and ENAQT as a function of  and µ. The following
descriptions are all borne out in the example in figure 2, which shows ⌘0, ⇠ and �opt as a function
of  and µ in the finite system of three sites with the trap at one end and the initial site in
the middle (see figure 1(a)). Regardless of the number of sites, several limiting cases can be
easily understood. Firstly, if  ⌧ µ, the particle will be lost before it can be trapped, regardless
of the amount of dephasing present. Secondly, at large  , the Hamiltonian term �i |⌧ i h⌧ |
presents a high potential barrier for the particle, meaning that it will be largely unable to access
the trapping site (this is the case even though the potential is imaginary). Consequently, high
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Figure 2. Characterization of ENAQT in the three-site system from figure 1(a).
Each of the three parameters defined in figure 1(b) (⌘0, ⇠ , and �opt) is displayed
as a function of trapping and loss rates. (a) High efficiency in the regime with
no dephasing is possible only for small loss and intermediate trapping. The two
lines indicate the region where the efficiency is about 1/2, meaning that neither
loss nor trapping dominates. They are computed from equation (6) (⌘0 = ↵0/�0).
(b) Large ENAQT occurs in regions not far from the lines in a, where dephasing
can push the balance between loss and trapping in favour of trapping. (c) In the
lower left, ⇠max occurs when �opt ⇡ 0.4151. On the upper left, strong trapping
presents a high potential barrier, meaning that strong dephasing is necessary for
ENAQT.

trapping efficiency is possible only in the regime of small µ and intermediate  (see figure 2(a)).
Also, high ENAQT is possible only in this region because outside of it, loss is so dominant that
dephasing will be unable to appreciably increase the trapping. This is illustrated in figure 2(b),
where it can be seen that ENAQT is large only where ⌘0 is neither very close to 0 nor very close
to 1. That is, ENAQT occurs when neither trapping nor loss is very dominant, meaning that
noise can push the balance in favour of trapping.

2. ENAQT on a finite chain

2.1. Analytical solution

Although there is no general solution, ENAQT can be determined analytically in every particular
finite system, which is how Plenio and Huelga proved that ⇠ = 0 in the case with the origin and
trap at opposite ends of the chain [5]. The solution is by Gaussian elimination (see the appendix),
meaning that ⌘ is a rational function of � ,  and µ. For the three-site example in figure 1(a),

⌘ = ↵2�
2 + ↵1� + ↵0

�3� 3 + �2� 2 + �1� + �0
, (6)

where ↵2 = 4µ, ↵1 = (2 + 2µ + 8µ2), ↵0 = (2µ2 +  + 4µ3 + 2µ), �3 = 8µ2( + µ),
�2=4µ(22µ+(8µ2+3) + 6µ3 + 4µ), �1 = 23µ2 + 22µ(9µ2 + 5) + 2(20µ4 + 20µ2 + 1) + 6
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(4µ5 + 6µ3 + µ), and �0 = 23(µ3 + µ) + 2(10µ4 + 13µ2 + 1) + µ(16µ4 + 29µ2 + 6) +
4µ2(2µ4 + 5µ2 + 2). ENAQT is calculated by maximizing this function with respect to � .
In particular, it can be found that @⌘/@� can only equal zero if �4µ + 43µ4 � 23µ2 + 23 +
2(20µ4 + 7µ2 + 9)µ + 32µ6 + 16µ4 + 7µ2 �  + 16µ7 + 8µ5 � 4µ3 � 2µ> 0, meaning that
there is a region in the (µ, ) plane in which ENAQT is impossible, as shown in figure 2. In all
other cases, ENAQT is strictly positive. The maximum ENAQT is ⇠max = 7 � 4

p
3 ⇡ 0.0718,

obtained as  and µ simultaneously tend to zero while keeping µ = /2
p

3. In that limit, �opt

tends to
q

1+
p

3
2+8

p
3
⇡ 0.4151.

2.2. Limit of small attenuation

It is difficult to form a simple, intuitive picture of ENAQT in this system that remains valid in all
parameter regimes, particularly when time scales converge, e.g. at  ⇠ 1 or µ ⇠ 1. Nevertheless,
there is a simple expression for ENAQT in the limit , µ ⌧ 1. In that case, both attenuation
mechanisms are weak and can be treated as perturbations on the dephased quantum dynamics.
In particular, because attenuation is slow compared to the quantum dynamics, we assume that
we can only consider the average site populations in calculating loss and trapping. In the case
with appreciable dephasing, the state of the system will quickly reach a completely mixed state,
meaning that each site will host 1/N of the remaining population. In particular, the rate at which
the particle will be trapped at the trap site will equal /N . Similarly, all population will be lost
at a rate µ, giving the efficiency

⌘dephased ⇡ /N
/N + µ

= 1
1 + Nµ/

. (7)

In the coherent case, the system eigenstates are u(k)
j =

q
2

N+1 sin ⇡ jk
N+1 with eigenvalues �k =

2 cos ⇡k
N+1 . Therefore, the amplitude of site l given an initial site m is

Ulm(t) = 2
N + 1

NX

j=1

sin
⇡ jl

N + 1
sin

⇡ jm
N + 1

e�it ·2 cos ⇡ j
N+1 , (8)

which can be used to show that the average population P̄lm = limT !1
1
T

R T
0 |Ulm(t)|2dt equals

P̄lm = 1
N + 1

✓
1 +

1
2
�lm +

1
2
�l,N+1�m

◆
, (9)

where �lm is the Kronecker delta function. From there we have ⌘coherent ⇡ (1 + P̄�1
lm µ/)�1. For

ENAQT, we do not consider the case l = m, meaning that there are two situations, depending on
whether the trap is opposite the initial site. Because partial recurrences can refocus excitation
from the initial site to the opposite site, if the opposite site is the target, l = N + 1 � m, the
average target population exceeds 1

N and ENAQT is impossible. This explains, at least in the
limit of small  and µ, Plenio and Huelga’s observation of the absence of ENAQT in end-to-
end transfer. In the transport between sites that are not opposite each other,

⇠ ⇡ 1
1 + Nµ/

� 1
1 + (N + 1)µ/

> 0. (10)

Notably, ⇠ depends only on the ratio µ/ . The validity of these approximations is demonstrated
in figure 3. The expression is more accurate for large µ/ because loss, by lowering all the
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Figure 3. ENAQT in the three-site system from figure 1(a), in the limit of
small attenuation, with  = µ = 10�3. As � ! 0, the time evolution is merely
perturbed coherent evolution, and the efficiency approaches the predicted value
of 1

5 (dash dotted line). As � ! 1, the Zeno effect ensures ⌘ ! 0. In the
intermediate regime, � ⇠ 1, the dephasing creates a fully mixed state, for which
the predicted efficiency is 1

4 (dashed line), giving an ENAQT of 1
20 .

amplitudes simultaneously, perturbs the time evolution less than trapping, which affects only
one site.

2.3. Other patterns

Several patterns emerge in longer chains and when the locations of the trapping site and
the initial site are varied. Table 1 shows the maximum possible ENAQT in chains up to
N = 8 with all possible combinations of the initial and trap sites. Each entry is calculated by
analytically solving the equations of motion and maximizing ⇠ as a function of  and µ, as
discussed above for the N = 3 chain. As we proved above, we can see that ENAQT is possible
in all configurations except when the initial site is located opposite the trap. Furthermore,
maximum ENAQT increases with increasing N . This is the opposite of the trend predicted
by equation (10), and occurs because the high values observed in the table generally occur in
the regime of small µ/ , where the estimate of ⌘coherent fails.

It can also be seen that, regardless of the trap site, ⇠max is equal for situations with
initial sites m and N + 1 � m. This is the case even though ⇠(µ, ) is not equal in the two
situations in general. In the limit of infinitesimally small  , µ and � , where the equality
obtains, coherent time evolution proceeds before any appreciable dephasing or loss takes
place. Therefore, coherent recurrences can occur, and although the recurrences are imperfect
because the eigenvalues �k are incommensurable, they become arbitrarily close to perfect after
a sufficiently long time. In particular, a particle initialized at m will refocus (arbitrarily close
to perfectly) at N + 1 � m after sufficient time. On the longer time scale of loss, the two initial
conditions become indistinguishable.

2.4. High ENAQT in symmetric situations

As shown in table 1, a high ENAQT of ⇠max = 1
2 occurs if the trap is in the middle of a chain

with an odd number of sites, regardless of the initial site. In that case, the full Hamiltonian
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Table 1. Analytically calculated maximum ENAQT in a chain with N sites,
depending on the initial and trap (⌧ ) sites. ENAQT is not defined if the initial
and trap sites coincide (X). All the values with the same N that are equal to three
decimal places are exactly equal. 0.072 = 7 � 4

p
3 and the rest are roots of more

complicated, but known, polynomials.
Initial site

N ⌧ 1 2 3 4 5 6 7 8

3 1 X 0.072 0
3 2 1/2 X 1/2
4 1 X 0.083 0.083 0
4 2 0.083 X 0 0.083
5 1 X 0.082 0.107 0.082 0
5 2 1/3 X 1/3 0 1/3
5 3 1/2 1/2 X 1/2 1/2
6 1 X 0.080 0.114 0.114 0.080 0
6 2 0.114 X 0.080 0.080 0 0.114
6 3 0.080 0.114 X 0 0.114 0.080
7 1 X 0.077 0.115 0.125 0.115 0.077 0
7 2 1/4 X 1/4 0.033 1/4 0 1/4
7 3 0.115 0.077 X 0.125 0 0.077 0.115
7 4 1/2 1/2 1/2 X 1/2 1/2 1/2
8 1 X 0.074 0.114 0.128 0.128 0.114 0.074 0
8 2 0.128 X 0.114 0.074 0.074 0.114 0 0.128
8 3 1/3 1/3 X 1/3 1/3 0 1/3 1/3
8 4 0.074 0.128 0.114 X 0 0.114 0.128 0.074

H commutes with the inversion operator P , defined as P | ji = |N + 1 � ji. The initial site
|⌧ i can be written as an equal superposition of symmetric and antisymmetric states, |⌧ i =

1p
2
(|Si + |Ai), where |Si = 1p

2
(|⌧ i + |N + 1 � ⌧ i) and |Ai = 1p

2
(|⌧ i � |N + 1 � ⌧ i). Because

|Ai is odd, P |Ai = �|Ai and H commutes with P , |Ai remains odd under time evolution.
Since the trap site is in the middle, it is even, meaning that the |Ai component of |⌧ i never
gets mapped to the trap site and can therefore not be trapped. In contrast, the |Si component
does get trapped. Therefore, the efficiency at zero dephasing is ⌘0 = 1

2 . When dephasing is
non-zero, the phase coherence in |Ai is lost, meaning that now the particle can be completely
trapped. In particular, if  � µ, a negligible amount will be lost, meaning that ⌘max = 1, giving
⇠ = ⌘max � ⌘0 = 1

2 .

3. ENAQT on a circle

If the transport takes place on a circle instead of a finite chain, the behaviour is qualitatively
the same. We consider here the same situation as above, except that in equation (1), there is an
additional term coupling sites |1i and |N i.

In the regime of weak attenuation, , µ ⌧ 1, as in the chain, ⌘dephased ⇡ (1 + Nµ/)�1.
In the coherent case, the eigenstate amplitudes are u(k)

j = 1p
N

e2⇡ i jk/N with eigenvalues

New Journal of Physics 14 (2012) 053041 (http://www.njp.org/)

http://www.njp.org/


9

Figure 4. The infinite system (top) and its characterization (bottom). As in the
finite chain (figure 2), high ⌘0 occurs for small loss and intermediate trapping,
ENAQT is highest at intermediate ⌘0 and the dephasing required for ENAQT
grows rapidly with increasing  .

�k = 2 cos 2⇡k
N , from where the average population is

P̄lm =

8
>><

>>:

1
N 2

(N (1 + �lm) � 1) , N odd

1
N 2

�
N

�
1 + �lm + �l,m+N/2

�
� 2

�
, N even.

(11)

Because P̄lm > 1
N if l = m + N

2 , there is no ENAQT if the initial site lies on the opposite side of
the circle to the trap. In other cases,

⇠ ⇡ 1
1 + Nµ/

� 1
1 + N 2µ/(N � 1)

> 0. (12)

As in the chain, this expression is more accurate for large µ/ .
Regardless of the number of sites, the maximum possible ENAQT on the circle is

⇠max =
(

0, the initial and trap sites opposite
1
2 , otherwise.

(13)

The situation is much simpler than in the chain, where table 1 is needed. The high value of ⇠max

occurs because the circle always has the inversion symmetry required in section 2.4.
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4. ENAQT on an infinite chain

ENAQT also occurs—albeit by a different mechanism—in infinite ordered systems. The
dephased dynamics of a particle on an infinite chain is well understood in the absence of trapping
and loss [17, 26, 27]. In the fully coherent case, � = 0, the dynamics is ballistic, while increasing
noise converts it into diffusion.

To observe ENAQT, we introduce loss µ everywhere and trapping  on all sites to the
left of the initial site (see figure 4(a)). In the coherent case, there is a sizeable probability
that the particle, owing to its ballistic motion, will move far to the right and be lost. In the
opposite extreme, � = 1, the particle is completely localized at the initial site by the Zeno
effect and is therefore eventually lost. In the intermediate region, ENAQT is possible because
decoherence slows down the spreading sufficiently to prevent the rightward-moving component
from escaping, but not strongly enough to prevent the particle from diffusing into the trap region.

Figure 4(b) shows numerically computed ENAQT on the infinite chain. The infinite
line was represented by sufficiently many sites N to avoid the particle reaching the edges.
Because the simulation time and N both scale as µ�1, the computation becomes expensive
for small µ, and we have imposed a lower cutoff of µ = 0.1. The largest ENAQT found is
⇠(µ = 0.1,  = 6.3) = 0.1233. Similar results are obtained with initial sites further from the
trapping region. In those cases, ENAQT is smaller because the particle has to travel farther to
the trapping region, but remains finite for small µ and intermediate  . ENAQT tends to zero as
µ ! 0, as µ ! 1 and as  ! 1 for the same reasons as in the finite chain. A question we
are not able to answer with numerical simulations is whether ENAQT is for ever exactly zero or
merely approaches zero asymptotically in the appropriate limits.

5. Conclusion

We have shown at least two different mechanisms for ENAQT in an ordered system. In the
finite lattice with small  and µ, this is caused by the fact that a dephasing-induced mixed state
is more likely to be found at the trap site than a coherently propagated initial state, except when
the initial and trap sites are opposite each other. In the infinite lattice, it occurs when dephasing
slows down otherwise ballistic transport and prevents a portion of the particle from escaping far
away from the trap region. We leave open the questions of whether the various mechanisms of
ENAQT (including those in disordered systems) can be understood in a unified picture and how
they are influenced by different types of noise, of which pure dephasing is only one limit.
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Appendix. Analytical calculation of the efficiency

The initial state of the system ⇢(0) can be understood as a vector in a Liouville space of
dimension N 2. In order to calculate the efficiency, we augment it to ⇢̃(0) with N 2 + 1 entries.
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The first N 2 entries we call the state sector, and they are equal to ⇢(0), while the final entry,
the accumulator, we initialized to ⇢̃N 2+1(0) = 0. The Liouvillian L is likewise modified to
L̃, an (N 2 + 1) ⇥ (N 2 + 1) matrix, where the top-left N 2 ⇥ N 2 elements are equal to L, and
the remainder are set to 0, except for the entry L̃N 2+1,⌧ 0 = 2 , where ⌧ 0 = 1 + (⌧ � 1)(N + 1) is
the coordinate of the population of the trap site ⌧ . That is, L̃ couples the population of the trap
site to the accumulator (but not vice versa) with strength 2 . Because L̃ does not couple from
the accumulator to the state sector of ⇢̃(t), the time evolution of the state sector under L̃ is equal
to the time evolution of ⇢(t) under L. During the evolution, the accumulator increases precisely
at the rate 2⇢⌧ 0(t), meaning that ⇢̃N 2+1(1) = ⌘, while the remaining elements of ⇢̃(1) are all
reduced to 0. In principle, one could calculate ⌘ by calculating ⇢̃(1) = limt!1 eL̃t ⇢̃(0), but this
appears to us to be too difficult analytically.

Instead of solving the initial-value problem, we solve a related steady-state equation. We
begin by modifying L̃ to L̃", which is the same except for L̃"

N 2+1,N 2+1 = ". Then we solve,
analytically by Gaussian elimination or otherwise, the linear system of equations

L̃"�̃ = "⇢̃(0). (A.1)

Here, �̃ is the steady state in the situation where ⇢(0) is being injected into the system at
rate ". In particular, since the total probability of being injected into the system is ", the fraction
"⌘ must go to the accumulator. Since the accumulator accumulates at a rate 2�̃⌧ 0 , we must
have �̃⌧ 0 = "⌘/2 . Now, the accumulator component of equation (A.1) is 2�̃⌧ 0 + "�̃N 2+1 = 0,
from which we can conclude that �̃N 2+1 = ⌘, meaning that the efficiency can be read out of the
solution �̃ . The result is independent of ", meaning that the procedure remains valid in the limit
of infinitesimally small ", where equation (A.1) reduces to a true steady-state equation, ˙̃� = 0.
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