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ABSTRACT: The dynamics of exciton quenching are critical to the operational
performance of organic optoelectronic devices, but their measurement and elucidation
remain ongoing challenges. Here, we present a method for quantifying small
photoluminescence quenching efficiencies of organic semiconductors under steady-state
conditions. Exciton quenching efficiencies of three different organic semiconductors,
PC70BM, P3HT, and PCDTBT, are measured at different bulk quencher densities under
continuous low-irradiance illumination. By implementing a steady-state bulk-quenching
model, we determine exciton diffusion lengths for the studied materials. At low quencher
densities we find that a secondary quenching mechanism is in effect, which is responsible
for approximately 20% of the total quenched excitons. This quenching mechanism is
observed in all three studied materials and exhibits quenching volumes on the order of
several thousand cubic nanometers. The exact origin of this quenching process is not clear,
but it may be indicative of delocalized excitons being quenched prior to thermalization.
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rganic semiconductors are generally disordered materials

with low permittivities and strongly bound photo-
excitations (excitons) at room temperature.l’2 Exciton
migration and the associated dynamics play important roles
in defining the performance of organic optoelectronic devices,
including organic solar cells (OSCs), organic light emitting
diodes (OLEDs), organic photodetectors (OPDs), and sensors
operating based on exciton quenching.’~® Exciton migration
through organic semiconductors is diffusive, usually described
by site-to-site hopping of localized excitons. Significant effort
has been expended to evaluate the diffusion lengths of singlet
excitons in particular because they are the more prevalent
species.”” "' In this regard, exciton diffusion lengths are often
evaluated by studying the dynamics of exciton quenching in
the presence of quenchers; specifically, time-resolved photo-
luminescence (PL) measurements can evaluate exciton life-
times and diffusion coefficients, providing sufficient informa-
tion to infer the exciton diffusion lengths.'*™"”

However, the signal-to-noise-ratio (SNR) of PL quenching
measurements approaches zero at low quenching efficiencies
because of the background noise, which contains sample-to-
sample variation and photon shot noise in low-emissive-yield
systems. It has therefore been very challenging to quantify
small exciton quenching yields, a problem recently addressed
by Siegmund et al,'® using one-dimensional (1-D) modeling
of solar cell photocurrent spectra to extract exciton diffusion
lengths even in nonfluorescent materials.

To investigate exciton quenching at low quencher densities
(ie, in the low-yield limit), we developed a method for
measuring exciton quenching efficiencies under steady-state
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conditions using low-irradiance thermal light. The technique
relies upon a steady-state three-dimensional (3-D) quenching
model that can be fitted to experimental results to directly
quantify exciton diffusion lengths, with no requirement for
knowledge of the exciton lifetimes and diffusion coefficients.
Importantly, because our method is background-free, i.e., it is
sensitive only to the quenched part of the PL signal, it remains
accurate at low quenching efficiencies. In this regime, we
observe an anomalous exciton quenching pathway that is
absent at high yields and would not be observed in transient
measurements. This secondary quenching pathway corre-
sponds to large quenching volumes and may originate from
the quenching of delocalized excitons prior to thermal-
ization.'”™**

Steady-State Bulk Quenching Model. The quenching efficiency
can be related to the quencher density without solving the
diffusion equation as follows: We consider a molecular
semiconductor matrix slightly doped with an exciton
quenching material, so that the ith quencher molecule is
located at position r;, We denote the probability that an exciton
initially at r will be quenched at quencher i as p(Ir — r}), for a
monotonically decreasing function p(r). The probability that
the exciton is quenched by any of the N quenchers within the
matrix is then 1 — [[,Y,(1 = p(Ir — r])). The observable
quenching yield (QY) is obtained by averaging the quenching
probability over the initial position of the exciton:
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QY = é/]]v[l - 11_1:! (1 — p(lr — x)))|dr o

The QY increases linearly with the quencher density at low
densities, where the quenching volumes of individual
quenchers do not overlap. It deviates from linearity with
increasing quencher density until saturation is achieved, where
the whole space is covered by the quenching volumes (Figure

1).
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Figure 1. Exciton quenching yield versus quencher number density
under steady-state conditions. Each quencher is surrounded by a
sphere indicating its quenching volume. At low densities, increasing
the number of quenchers results in a linear increase in the quenching
yield. A deviation from linearity occurs as the quenching volumes start
overlapping. Ultimately, the whole space is quenched, and a saturation
is achieved.

To compute the QY, we first determine p(r) by assuming a
quencher of radius a centered at the origin of a 1-D lattice with
lattice constant 6. The exciton undergoes a random walk with
lifetime 7 and is quenched if found at the position x = a. The
probability p(x) obeys the following relation:

P = (ol = &) + pla + 8)) = Sp(w)
2 T 2)
where At is the time of each jump. The first, lossless term
indicates that the survival probability for a walker starting at x
equals the average of the probabilities for a walker starting
from the points reachable in one step from x. The second term
adds loss, ie., some probability is lost during each jump to
ensure an exponential decay with lifetime 7. From the
definition of the second derivative, in the continuum limit (&
— 0) eq 2 becomes
& 20t
g2P) ) =0 )
where &°/2At equals the diffusion constant D (in one
dimension). In three dimensions, this becomes the spherically
symmetric Helmholtz equation:

1

Vp(r) = —p(r) =0

o) = (o) “
whose radial part is solved by a spherical Bessel function of
order zero. In particular, the real solution obeying the
boundary conditions p(a) = 1 and p(c0) = 0 is a spherical
Hankel function of the second kind:
a4 ,~(r—a)/JDr

P =7 ©
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where Iy = /Dt is the 1-D diffusion length.”’ We validated
this expression with kinetic Monte Carlo simulations (see
Figure S1). Substituting eq S into eq 1, we can compute the
QY for different exciton diffusion lengths as a function of
quencher number density (Figure 2). The quencher radius is
considered to be 0.75 nm, which is a typical dimension for
organic semiconductors.
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Figure 2. Predicted exciton quenching yield plotted versus the
number density of quenchers for exciton diffusion lengths between 2
and 18 nm. Saturation occurs at lower concentrations for larger
exciton diffusion lengths, as one would intuitively expect.

We experimentally studied two polymeric semiconductors,
poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly[N-9-hepta-
decanyl-2,7-carbazole-alt-5,5-(4’,7'-di-2-thienyl-2',1",3’-benzo-
thidizole)] (PCDTBT) and a fullerene derivative [6, 6]-
phenyl-C71-butyric acid methyl ester (PC70BM) for analysis
with this model. In this regard, standard architecture organic
solar cells with a structure ITO/PEDOT:PSS/semiconductor/
Al where ITO is indium tin oxide and PEDOT:PSS is
poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ]
were fabricated. Notably, semiconducting active layers were
prepared from solutions at different concentrations of the
exciton quenching material (PC70BM for the polymers and
TAPC for the fullerene) via sequential dilution where TAPC is
4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl)-
benzenamine]. Further details of device fabrication and
characterization are provided in the Supporting Information.

Experimental Results. We now move on to our experimental
results for quantifying the exciton quenching efficiency in
PC70BM, PCDTBT, and P3HT. Here we show the details of
measurements on PC70BM as an example, and the results for
the other two systems are presented in the Supporting
Information (Figures S2 and S3). The experimental parameter
that allows the evaluation of small quenching yields is the
internal quantum efficiency (IQE) of the solar cells containing
the three neat semiconductors with varying amounts of
quencher. The IQE is the product of the exciton quenching
yield, the charge transfer efficiency (9cr), and the charge
collection efficiency (1cc):**

IQE = QY 1 (6)

The charge collection and transfer efficiencies in our
measurements are invariant with respect to the density of
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quencher as all cells operate far below the charge transport
percolation threshold of the quenching molecules. Hence, only
those charges ghotogenerated very close to the electrode can
be collected.> >’ Figure 3a shows representative external
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Figure 3. (a) External quantum efficiency (EQE) spectra of devices
containing PC70BM as the matrix material and different concen-
trations of TAPC (wt %) as the quencher. (b) Internal quantum
efficiency (IQE) evaluated for each device from the EQE with analysis
of parasitic absorption and interference effects. At low TAPC
concentrations, a wavelength-dependent IQE is observed because of
wavelength-dependent (illumination energy-dependent) charge gen-
eration in predominantly neat PC70BM. (c) Quencher-induced-IQE
spectra for charge generation via TAPC:PC70BM pairs evaluated by
subtracting the IQE of the neat PC70BM device. These IQEs show no
significant wavelength dependence.

quantum efficiencies (EQEs) of the low-donor-content devices
measured at short circuit for PC70BM at different densities of
TAPC as exciton quencher. As a matter of nomenclature, the
component with the smaller electron affinity is the electron
donor. By considering the parasitic absorptions and interfer-
ence effects in the solar cell stack via a transfer matrix analysis,
it is possible to accurately determine the IQE from this
measured EQE. This is shown in Figure 3b.”® The extinction
coeflicients and refractive indices of the materials of the stack
are presented in Figure S4, and these were carefully
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determined using spectroscopic ellipsometry, Kramers—Kronig
transformation, or collated from trusted literature. In order to
quantify the charge generation mediated only by the quencher
molecules, we subtracted the IQE of the neat (PC70BM-only)
semiconductor device from all the other cells with different
quencher concentrations c:

IQ_EDA(C) = IQE(c) — IQE(c = 0) (7)

This approach delivers the quencher-induced-IQE, IQEp,(c)
in which the contribution of excitons quenched by any means
other than via the quencher molecules is excluded. These
contributions may arise (for example) from self-quenching
within the disordered density of states of the semiconductor
matrix or through trap states.”” Quencher-induced-IQE spectra
are shown in Figure 3c. They are independent of the incident
illumination energy (within experimental uncertainty). This is
expected for charge generation at a donor—acceptor interface,
while self-quenching within the PCBM matrix (IQE(c = 0)) is
excitation energy-dependent.

The ultimate results of this analysis are shown in Figure 4 for
all three systems studied (PC70BM, PCDTBT, and P3HT).
The exciton quenching yield is plotted versus the number
density of quenchers (calculated from the weight ratios and
densities). At low quencher concentrations (<1 wt %),
quenching yields were simply determined from the quencher-
induced-IQEs of Figure 2c (open symbols in Figure 4). At
higher quencher concentrations (>1 wt % and into the
saturation regime shown in Figure 1), the QY was directly
measured from steady-state PL measurements on films without
the ancillary solar cell layers (filled symbols). The quencher-
induced-IQE values were then normalized to match the PL
data at shared quencher density data points for self-
consistency. Experimental limitations precluded PL quenching
measurements on the PC70BM system. However, fortunately
the saturation of the QY in the fullerene was almost reached
using the quencher-induced-IQEs to satisfy the model fitting.
We should note that because our method probes exciton
quenching using charge—carrier photogeneration, it is not
confounded by long-range energy transfer from a molecule to a
quencher. This mechanism has been observed in P3HT:PCBM
blends.”’”

It is clear from the data in Figure 4 that the quenching yields
behave differently from what would be predicted for the
diffusion-only case (Figure 2). Typical diffusion lengths from 4
to 8 nm can fit the higher quencher densities >10"® cm™.
However, at lower concentrations, there is a clear anomalous
trend. The exciton quenching yields are far larger than
expected from an extrapolation of the diffusion-regime to
low quencher densities. This secondary pathway, however,
shows a linear increase at the lowest densities which saturates
at mid quencher densities; this indicates the pathway is not
particularly efficient. Because the exact mechanism for this
quenching pathway is unclear, we cannot provide a probability
function for quenching through this process that could be used
in eq 1. Therefore, we used a simple and generic model
suggested by Perrin’’

Qr=1-¢" (8)
where ¢ is the quencher concentration and V corresponds to
the “quenching volume”. The total quenching yield can then be
written as the sum of the diffusion and the anomalous
quenching yields
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Figure 4. Exciton quenching efficiency as a function of quencher
number density in PC70BM, P3HT, and PCDTBT. In all three
materials, the data can be described using a steady-state exciton
diffusion model at high quencher densities (dotted lines), while
anomalously strong quenching is observed at low quencher
concentrations (dashed lines). The solid line is a fit to eq 9, yielding
exciton diffusion lengths and the quenching volume for the anomalous
quenching mechanism. The vertical error bars correspond to one
standard deviation of the quencher-induced-IQEs, and the horizontal
error bars correspond to the concentration uncertainty calculated for
sequential dilutions.

QYtotal = yQYan + (1 - y)QYdiff (9)
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in which y represents the contribution of the efficiency of the
anomalous quenching pathway. The final results of the fitting
based on eq 9 are shown in Figure 4 (solid lines), yielding the
diffusion length and quenching volume for each material
system. The values of the exciton diffusion lengths for
PC70BM, PCDTBT, and P3HT are comparable to the values
previously obtained using time-resolved photolumines-
cence.”''® The anomalous quenching pathways play a
significant role in the quenching at low quencher densities,
with large quenching volumes of 9 325, 14 900, and 2 381 nm?®
in PC70BM, P3HT, and PCDTBT respectively. It is plausible
that such large quenching volumes may be due to delocalized
excitons formed at very early times of photoexcitation within
the disordered landscape, as shown recently by Mannouch et
al.’" This initially delocalized exciton can be quenched at a
finite distance from the quencher prior to density localization.
This pathway is not efficient and does not play a substantial
role in the regime of high quencher density. Further
understanding this mechanism may result in better material
optimization for optoelectronic devices requiring exciton
migration. The observation of a pathway with large quenching
volumes is also an intriguing fundamental insight into
disordered semiconductors requiring additional careful anal-
ysis.

In conclusion, we have presented a new way of measuring
small exciton quenching yields based on charge photo-
generation (internal quantum efficiency) measurements in
the steady state. A 3-D steady-state quenching model has been
developed and applied to the experimental results of quenching
efficiency versus quencher density for three organic semi-
conductors. The exciton diffusion lengths extracted from the
higher quencher density regime are consistent with previous
reports using standard PL quenching methods. The improved
signal-to-noise ratio of our technique is a key feature and
allows for quantification of the quenching yields at low
quencher densities. In this regime, we found an anomalous
quenching pathway which is not efficient but long-range. This
may be related to a question that has been a matter of some
debate in the organic semiconductor community, namely
whether exciton quenching occurs through localized or
delocalized states. Our observations may be indicative of
delocalized excitons being quenched at a certain distance from
the quencher before they thermalize.
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