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P H Y S I C A L  S C I E N C E S

Even a little delocalization produces large kinetic 
enhancements of charge-separation efficiency 
in organic photovoltaics
Daniel Balzer and Ivan Kassal*

In organic photovoltaics, charges can separate efficiently even if their Coulomb attraction is an order of magnitude 
greater than the available thermal energy. Delocalization has been suggested to explain this fact, because it could 
increase the initial separation of charges in the charge-transfer (CT) state, reducing their attraction. However, 
understanding the mechanism requires a kinetic model of delocalized charge separation, which has proven diffi-
cult because it involves tracking the correlated quantum-mechanical motion of the electron and the hole in large 
simulation boxes required for disordered materials. Here, we report the first three-dimensional simulations of 
charge-separation dynamics in the presence of disorder, delocalization, and polaron formation, finding that even 
slight delocalization, across less than two molecules, can substantially enhance the charge-separation efficiency, 
even starting with thermalized CT states. Delocalization does not enhance efficiency by reducing the Coulomb 
attraction; instead, the enhancement is a kinetic effect produced by the increased overlap of electronic states.

INTRODUCTION
The precise mechanism of how charges in many organic photovoltaics 
(OPVs) separate with near-perfect efficiency remains unclear, espe-
cially considering that their Coulomb attraction can be more than an 
order of magnitude larger than the available thermal energy (1, 2). 
OPVs typically contain a heterojunction of electron donor and elec-
tron acceptor materials. Upon excitation, an exciton is created in 
either material and diffuses to the donor-acceptor interface, where 
charge transfer can form an interfacial charge-transfer (CT) state 
(left of Fig. 1A). For the photogeneration process to continue, the 
charges must escape their Coulomb attraction and separate (right of 
Fig. 1A). In organic semiconductors with the typical dielectric con-
stants of 3 to 4, charges separated by 1 nm across the interface expe-
rience a Coulomb attraction of 360 to 480 meV, more than an order 
of magnitude larger than the thermal energy kBT = 25 meV.

The efficient separation is commonly attributed to charge de-
localization, an argument supported by the experimental observation 
of efficient and fast separation via delocalized CT states (3–8). On 
this view, the delocalization increases the initial separation of charges 
in the CT state, reducing the Coulomb attraction and the energetic 
barrier that needs to be overcome (Fig. 1A). However, the concept 
of a kinetic barrier to charge separation is problematic, because sepa-
ration is not a one-step process from a CT state to a separated state 
but a multiple step process through many states, where each transi-
tion has its own energetic barrier (Fig. 1B). Furthermore, the barrier 
can completely disappear in free energy when entropy and disorder 
are considered (9) and actually increase when delocalization is in-
cluded (10). Therefore, any charge-separation efficiency improvement 
caused by delocalization must come from nonequilibrium kinetic 
effects, not purely energetic considerations (10, 11).

Many kinetic models of charge separation have included charge 
delocalization, with most of them finding an increased efficiency 
when delocalization is considered (12–29). These approaches have 

ranged from quantum-mechanical descriptions of delocalization in 
disordered materials (12–19) to phenomenological treatments that 
include delocalization in an effective way (24–29). However, differ-
ent approaches have used approximations that limit their range of 
applicability in three important ways. First, approaches that do not 
include static disorder are applicable to organic crystals but not dis-
ordered organic semiconductors. Second, approaches that treat 
delocalization in an effective way tend to not include the complete 
quantum-mechanical description required for accurately predicting 
the effects and extent of delocalization. Last, approaches that do not 
adequately describe the coupling of the charges to their environment 
can fail to describe the formation of polarons, which can localize the 
states significantly (30), meaning that those approaches can over-
estimate delocalization and efficiency enhancements. Therefore, an 
accurate kinetic model of charge separation in OPVs must include 
these three important ingredients: disorder, a quantum-mechanical 
treatment of delocalization, and polaron formation.

The most complete kinetic models of charge separation have in-
cluded all three important ingredients (31–33). However, they re-
main computationally expensive, limiting their application to small 
systems, low dimensions, or short times. Tamura and Burghardt used 
an atomistic approach, solving the time-dependent Hamiltonian 
using multiconfigurational time-dependent Hartree (31, 34, 35) to 
predict the ultrafast separation of an interfacial exciton over about 
100 fs, attributing the efficient separation to vibronically hot CT states 
and to charge delocalization reducing the Coulomb attraction. While 
atomistic approaches do not require adjustable parameters, they are 
expensive and therefore limited to relatively few states and short 
times. Bittner and Silva (32) and Janković and Vukmirović (33) both 
parameterized model Hamiltonians, which allows for longer simu-
lations on more states, as fewer degrees of freedom are tracked. While 
their approaches are computationally cheaper, they are still limited 
to two- and one-dimensional simulations, respectively. Both ap-
proaches include the formation of polarons using the polaron trans-
formation. Bittner and Silva (32) studied the separation of charges in a 
two-dimensional heterojunction using a time-dependent Schrödinger 
equation. They observe fast separation into free polarons, due to 
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charges tunneling from the initial exciton in under 35 fs (rather 
than proceeding through CT states), due to resonance between ex-
citons and free polarons. However, the environment was treated as 
a bath of extended, shared phonons (which is common for crystalline 
systems), rather than as local molecular vibrations, which is more 
appropriate for disordered molecular systems (36). Janković and 
Vukmirović (33) modeled charge separation in a one-dimensional 
system over long times to study the competition of delocalization, 
disorder, and polaron effects. They found that separation proceeds 
slowly through thermalized CT states; after excitons form CT states 
in 1 to 10 ps, the latter separate in about 1 ns. However, rates were 
calculated using modified Redfield theory, which requires small off- 
diagonal system-bath couplings, an assumption that is not met in 
many materials, including some organic semiconductors, where strong 
system-bath coupling alone can localize the electronic states (37).

The best kinetic models have remained computationally expen-
sive for two main reasons. First, correctly describing delocalization 
requires a quantum-mechanical treatment, which is difficult in dis-
ordered materials, where periodic boundary conditions must be 
replaced with large simulation boxes. Second, charge separation is a 
two-body problem involving the correlated motion of an electron 

and a hole, meaning that the Hilbert space size is roughly the square of 
a single-body calculation. As a result, a quantum-mechanical treatment 
has so far proved intractable in three dimensions (2). To study charge 
separation over long times, in large systems, and in three dimensions, 
we require a more efficient approach that still meets all requirements.

A logical starting point for understanding delocalization in charge 
separation is extending kinetic models that describe the transport of 
partially delocalized single particles (38–48). However, even this 
task is difficult when disorder, delocalization, and polaron forma-
tion are required (38). The best recent approaches to tackle the 
single-particle problem are all effective Hamiltonian methods and 
include fragment orbital-based surface hopping (39–42), where the 
Hamiltonians are parameterized using an atomistic approach re-
quiring no adjustable parameters, as well as adaptive hierarchy of 
pure states equations (43), which emphasizes the nonperturbative 
treatment of the system-environment couplings using hierarchy 
equations of motion. The computational cost of these approaches 
has limited their application to short times in two-dimensional sys-
tems or large one-dimensional systems.

Recently, we introduced delocalized kinetic Monte Carlo (dKMC), 
the first three-dimensional model of charge and exciton transport 
that includes disorder, delocalization, and polaron formation (45). 
dKMC is a computationally improved version of secular polaron- 
transformed Redfield theory (sPTRE) (44), which is the stationary 
and secular limit of multichromophoric coherent resonance energy 
transfer (49–51), and one example of a second-order polaronic 
master equation (52–58). Because sPTRE is in the polaron frame, 
which changes as a function of system-bath coupling, it can describe 
polaron transport in the intermediate regime while also repro-
ducing the well-known hopping and band conduction extremes (44). 
dKMC shows that transport in moderately disordered materials is 
that of charges hopping between partially delocalized electronic 
states and that even a small amount of delocalization can increase 
carrier mobilities markedly (45).

Here, we extend dKMC to make the charge-separation problem 
computationally accessible, allowing the first three-dimensional simu-
lation of the dynamics and efficiency of charge separation in the pres-
ence of disorder, delocalization, and polaron formation. We use it 
to show that small amounts of delocalization can produce large ef-
ficiency enhancements, even for thermalized CT states. Contrary to 
the common hypothesis, these delocalization enhancements are not 
a consequence of a reduction in the initial Coulomb binding energy. 
Rather, delocalization actually increases the total binding energy, and 
the efficiency enhancements are a kinetic effect caused by greater 
overlaps between electronic states, which allow charges to move 
further and faster (Fig. 1B). All of the approximations used in this 
work are conservative, chosen to underestimate the extent and role 
of delocalization; in the end, we discuss ways to relax the approxi-
mations, which could lead to an even greater role for delocalization.

RESULTS
Model
Our approach is based on dKMC (45). Here, we summarize the changes 
used to extend dKMC to the two-body charge-separation problem, 
which are detailed in Methods.

The charge-separation problem is described by the Hamiltonian

  H =  H  S   +  H  B   +  H  SB    (1)

U(r )

U > U
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U

U(r )
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Fig. 1. Mechanism of delocalization-enhanced charge separation. (A) Charge 
separation is typically modeled (purple insets) by assuming that the charges are 
localized onto individual molecules or sites (spheres) by disorder (different shades). 
When both charges are localized at the donor-acceptor interface, they have a small 
electron-hole separation reh and a large Coulomb attraction U(r). It has been pro-
posed that delocalization of charges across many molecules (green insets) facilitates 
their separation by increasing their initial separation and decreasing their Coulomb 
attraction. (B) While delocalization does decrease the Coulomb binding energy 
(∆U), it increases the overall binding energy (∆E), meaning that a reduction in the 
CT state binding energy is not the cause of delocalization enhancements. Instead, 
delocalization increases the overlaps between electronic states, allowing delocalized 
charges (green clouds) to hop further and faster than localized ones (purple dots).
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whose components describe the system HS, the bath HB, and the 
interaction between them HSB.

We model the system using a tight-binding model of a d-dimensional 
cubic lattice containing Nd/2 donor sites next to Nd/2 acceptor sites, 
each representing a molecule or part of a molecule (Fig. 2A). Each 
site is assigned a highest occupied molecular orbital (HOMO) and a 
lowest unoccupied molecular orbital (LUMO) energy, so that an 
electron occupying that site will have the LUMO energy and a hole 
will have the HOMO energy. These energies are assumed to be dis-
ordered to model the different local environments around different 
molecules, which arise from static variations in the spacing and ori-
entation of molecules. The HOMO and LUMO energies are drawn 
randomly from Gaussian distributions  N( E 0  HOMO , )  and  N( E 0  LUMO , ) , 
where the energetic disorder  is assumed to be equal for the HOMOs 
and the LUMOs (59).

In the two-body problem, the Hilbert space consists of ordered 
pairs of sites, where ∣m, n⟩ represents an electron on donor site m 
and the hole on acceptor site n. The energy of this pair is   E  m,n   =  
E m  LUMO  −  E n  HOMO  + U(r) , where   E m  LUMO   is the LUMO energy of site 
m,   E n  HOMO   is the HOMO energy of site n, and U(r) is the Coulomb 
potential of charges separated by a distance r

  U(r ) = −     e   2  ─ 4    0      r   r
    (2)

where e is the elementary charge, 0 is the vacuum permittivity, and 
r is the dielectric constant (here, taken to be r = 3.5).

A pair of sites is electronically coupled to other pairs of sites that 
can be obtained by moving either the electron or the hole, but not 
both, giving the system Hamiltonian

   

 H  S   =   ∑ 
m∈D,n∈A

     E  mn  ∣m, n〉〈m, n∣+

         ∑ 
m≠ m ′  ∈D,n∈A

     J  mn, m ′  n  ∣m, n〉〈 m ′  , n∣+    

     ∑ 
m∈D,n≠ n ′  ∈A

     J  mn,m n ′    ∣m, n〉〈m,  n ′  ∣

    (3)

In general, the couplings Jmn, m′n and Jmn, mn′ can be disordered or 
long range; however, we assume only constant nearest-neighbor 
couplings with strength J.

To model the bath, every site is assumed to have an identical, 
independent bath of harmonic oscillators representing molecular 
vibrations, which is the usual assumption for disordered molecular 
materials (36, 60). Then, the bath Hamiltonian is given by

   H  B   =   ∑ 
m∈D,k

       mk    b mk  †    b  mk   +   ∑ 
n∈A,k

       nk    b nk  †    b  nk    (4)

where nk is the frequency of the kth bath mode at the nth site, and 
  b nk  †    and bnk are the corresponding creation and annihilation operators.

The system-bath interaction is described by a coupling of every site 
to its bath modes. We assume a linear coupling of strength gnk be-
tween site n and bath mode k, so that the interaction Hamiltonian is

   
 H  SB   =   ∑ 

m∈D,k
     g  mk  ∣m, n〉〈m, n∣( b mk  †   +  b  mk  ) +

     
     ∑ 

n∈A,k
     g  nk  ∣m, n〉〈m, n∣( b nk  †   +  b  nk  )

    (5)

The formation of polarons [quasi-particles containing a charge 
and the distortion it causes to the bath (61, 62)] is described by 
applying the polaron transformation to H, which displaces the bath 
modes using the state-dependent displacement operator (63)

   
  e   S  = exp  (    ∑ 

m∈D,k
      
 g  mk  

 ─    mk    ∣m〉〈m∣( b mk  †   −  b  mk   )  )   
     

  ⊗ exp  (    ∑ 
n∈A,k

      
 g  nk  

 ─    nk    ∣n〉〈n∣( b nk  †   −  b  nk   )  )   
    (6)

Using the polaron transformation has two benefits. First, it 
reduces the system-bath coupling by absorbing most of the interac-
tion into the polaron itself, allowing the residual interactions to be 
treated perturbatively (63). Second, it reduces the electronic cou-
plings within the system, giving smaller polarons (30) and reducing 
the complexity of dKMC calculations (45).

The results of applying the polaron transformation to H are given 
in Methods. The polaron-transformed system Hamiltonian     ̃  H    S    is 
then diagonalized to find the joint polaron states of the electron and 
the hole. The extent of the delocalization of polaron state  can be 
quantified using the inverse participation ratio (IPR)

   IPR     =  (  ∑ 
m∈D,n∈A

     ∣〈m, n∣〉∣   4 )   
−1

   (7)

which describes roughly how many pairs of sites (m, n) the state  is 
delocalized over. The IPRs calculated using Eq. 7 depend on all the 
parameters of the model; in particular, IPRs increase with electronic 
coupling J and decrease with disorder  and system-bath coupling g. 

A B

Polaron 
formation

IPR = 37 IPR = 3.0

C

Fig. 2. Components of the dKMC model. (A) A heterojunction is modeled as a lattice of sites with disordered energies (different shades), representing acceptor (orange) 
and donor (blue) molecules. Each site is coupled to an environment (motion lines) and to its neighbors. (B) Delocalization of the electronic states is found by diagonalizing 
the system’s Hamiltonian, with the eigenstates representing the simultaneous position of the electron (in the acceptor, blue) and the hole (in the donor, orange). (C) Polaron 
formation further localizes the states. Inverse participation ratios (IPRs) are shown for J = 30 meV and  = 150 meV.
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As shown in Fig. 3, the Coulomb interaction stabilizes (Fig. 3A) and 
localizes (Fig. 3, B and C) states in which the electron and the hole 
are close together, such as CT states.

We begin dKMC simulations with the charges in a CT state. Be-
cause of disorder, there are many CT states of various energies and 
multiple plausible ways they could be chosen, as reflected in the debate 
about whether separation proceeds through low-energy, thermalized 
CT states or high-energy, hot CT states. To examine various possi-
bilities, we choose the initial CT state in one of three ways. Random 
CT states are chosen uniformly at random from the NCT polaron 
states with the smallest electron-hole separations, where NCT is set 
equal to the number of interfacial pairs on the lattice. Thermalized 
CT states are chosen from the same NCT most closely bound polaron 
states but in proportion to their Boltzmann factors. Last, overlap 
CT states are chosen from all the polaron states, in proportion to 
their overlap with interfacial pairs, ∣∑(m, n) ∈ CT⟨m, n∣〉∣2. This 
choice mimics states prepared by charge transfer from an interfacial 
exciton, which would be most strongly coupled to interfacial pairs. 
Among the three initial conditions, thermalized CT states are, on 
average, lowest in energy, most bound, and least delocalized, while 
overlap CT states are at the opposite extreme (Fig. 3, D to F).

Starting with any of these initial CT states, dKMC is a form of 
kinetic Monte Carlo (KMC) that uses polaron-frame Redfield rates, 
computed in Methods, to evolve trajectories through the polaron 
states. As in regular KMC [which instead uses Marcus (64) or 
Miller-Abrahams (65) rates], the next state is chosen with a proba-
bility proportional to the rate of transfer to the state (2, 38, 60, 66, 67). 
The hopping continues until a terminating condition is reached. If 

the polarons are separated by more than a chosen separation dis-
tance rsep, which we set to 5 nm, the charge separation is considered 
successful. By contrast, the charge separation is considered failed if 
the polarons recombine or if the number of hops exceeds the limit 
nhops, which we set to 2000. The latter assumption avoids infinite 
loops, such as hopping between two low-lying states, where the 
polarons would probably eventually recombine. Last, the internal 
quantum efficiency (IQE) is calculated as the fraction of trajecto-
ries where the polarons separate, averaged over many realizations 
of disorder.

Delocalization increases charge-separation efficiency
Figure 4 shows that delocalization increases the efficiency of charge 
separation by comparing the IQE calculated with localized polarons, 
using a standard KMC approach, to that calculated with partially 
delocalized polarons, using dKMC. When the electronic coupling J 
is low, the electronic states are localized, meaning that KMC and 
dKMC agree. As J increases, the states become more delocalized and 
the delocalization enhancement predicted by dKMC increases 
regardless of what initial CT states are chosen.

Figure 4A shows significantly different efficiencies for thermal-
ized, random, or overlap initial CT states. In both dKMC and KMC, 
the thermalized CT states separate with a lower efficiency than ran-
dom CT states, suggesting that, for the parameters studied here, a 
randomly excited CT state is able to separate before it thermalizes. 
This result supports the idea that hot CT states can improve charge 
separation in OPVs, as has been observed experimentally (3–8). 
However, our results are also consistent with observations of highly 

A B C

D FE

Fig. 3. Properties of the polaronic states. In (A) to (C), the dots represent the polaronic states of a two-dimensional (2D) heterojunction with J = 75 meV and  = 150 meV. 
(A) The Coulomb interaction stabilizes states with small electron-hole separations (the orange line is the Coulomb potential and the dashed lines are ±2 on either side). At 
any reh, including for CT states, there are states with a wide range of energies. (B) States with small reh (and, therefore, large Coulomb attractions) are more localized. 
(C) Low-energy states are more localized, while the more delocalized states lie closer to the middle of the density of states. (D to F) The average separation, IPR, and 
energy of the three kinds of initial CT states, as a function of the electronic coupling J. Overlap CT states are chosen based on each state’s overlap with interfacial CT site pairs, 
producing states that are the most separated, delocalized, and highest in energy. Random CT states are chosen uniformly from the states with the smallest reh. Thermalized 
CT states are chosen from the states with the smallest reh in proportion to their Boltzmann factor, producing initial states that are the least separated, least delocalized, 
and lowest in energy. The error bars are the SEMs.
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efficient separation from thermalized CT states (68–70), because 
dKMC can reproduce high IQEs from thermalized states, especially 
if they are assisted by delocalization.

These large enhancements can be caused by small amounts of 
delocalization. Figure 5A shows the IQE of random and thermalized 
CT states as a function of their IPR, illustrating how quickly the 
efficiency grows with delocalization. At the highest coupling, J = 
75 meV, thermalized and random CT states have IPRs of only 1.5 
and 2.6, but these are enough to produce fivefold and twofold IQE 
enhancements, respectively. Therefore, just as how small amounts 
of delocalization can markedly improve polaron mobilities (45), 
they can also facilitate the separation of charges experiencing a 
significant Coulomb attraction, a process that is underestimated by 
standard KMC.

Kinetic effects are more important than the reduction 
in Coulomb attraction
Delocalization has usually been argued to enhance the IQE by 
increasing the initial electron-hole separation in the CT state, thus 
reducing the Coulomb attraction and binding energy. However, this 
standard argument is incorrect; instead, delocalization enhancements 
are a kinetic effect chiefly caused by the increased overlap of elec-
tronic states (Fig. 5). It is true that the Coulomb binding energy 
U = U∞ − UCT = −UCT decreases with initial reh, as shown in 
Fig. 5B. However, the Coulomb binding energy is not the sole ener-
getic penalty of charge separation, and Fig. 5B also shows the total 
binding energy E as a function of the reh of the initial CT states. It 
is calculated as E = E∞ − ECT, where E∞ is the equilibrium energy 
of two separated polarons, each calculated independently as the 
thermal expectation value of the energy of a single polaron in a box 
of size   N box  d   . As shown in Fig. 5B, E increases with increasing initial 
delocalization and reh.

The increase in total binding energy due to delocalization was 
predicted by Gluchowski et al. (10), who attributed it to two mech-
anisms. First, level repulsion between coupled pairs of sites will gen-
erally stabilize the lower-energy state, further increasing the binding 
energy of already most tightly bound states. Second, the lowest-lying 
CT states generally remain localized as J increases because they are 
unlikely to have near-resonant neighbors. By contrast, higher-lying 
CT states become more delocalized at high J, increasing their reh 
until they no longer enter into the averaging for U and E. Overall, 

A

B

Fig. 4. Delocalization and dimensionality increase charge-separation efficiency. 
(A) IQEs of charge separation, for a system with  = 150 meV and varying electronic 
coupling J, modeled using regular KMC (blue) and dKMC (orange). When the 
states are localized (small J), dKMC and KMC agree, but as J increases, delocaliza-
tion significantly enhances the dKMC efficiency over the classical KMC hopping. 
For all J, overlap CT states separate slightly more efficiently than random CT states 
and significantly more efficiently than thermalized ones. (B) IQEs of charge separa-
tion starting in random CT states, with  = 150 meV and varying J, modeled by 
KMC and dKMC in each dimension. Delocalization enhances IQE in all dimensions 
but more strongly in higher dimensions. The 3D dKMC line stops at a relatively 
small value of J because of computational cost. The error bars in both panels 
are the standard errors of the mean (SEMs).

A B C

J J

J

J

Fig. 5. Kinetic origin of delocalization enhancements. (A) The charge-separation efficiency (IQE) increases with the delocalization of the initial CT states (IPR, shown for 
J from 0 to 75 meV). Results are for a 2D heterojunction with  = 150 meV. (B) The efficiency increase with delocalization is typically attributed to larger initial electron-hole 
separation reh and the resulting reduction in the Coulomb binding energy ∆U. Although ∆U does decrease with reh, the total binding energy of the initial state (∆E) actually 
increases with reh due to delocalization stabilization. (C) Therefore, the efficiency increases with the total binding energy of the initial state, contrary to the common 
hypothesis that delocalization enhancements are simply a consequence of a reduction in binding energy.
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at higher J, E increases because of the greater contribution from 
low-lying localized traps, which are themselves stabilized by level 
repulsion.

Overall, Fig. 5C shows that the IQE increases with the binding 
energy, showing that the delocalization does not enhance efficiency 
by reducing the energetic barrier to charge separation. Instead, de-
localization enhancements must be a purely kinetic (as opposed to 
energetic) effect, caused by the increased overlaps between the 
partially delocalized electronic states, which help the polarons move 
apart faster and further in fewer hops.

Delocalization enhancements are greater in  
higher dimensions
Previously, we found that delocalization enhances the transport of 
polarons more in higher dimensions (45). In particular, polarons 
are more delocalized in higher dimensions because of the increased 
number of neighboring sites, which increase the likelihood of having a 
neighboring site with similar energy to allow delocalization.

Higher dimensions are also important for accurately modeling 
charge separation. Figure 4B shows that IQEs computed using both 
regular KMC and dKMC are higher in higher dimensions. In both 
cases, higher dimensions increase the number of nearest neighbors 
that polarons can move to, increasing the likelihood of a fast sepa-
ration pathway. This effect becomes more pronounced when delocal-
ization is described using dKMC. When the polarons are delocalized, 
they can move further in one hop, and the number of possible des-
tinations increases with dimension faster than in localized hopping, 
especially considering the greater delocalization lengths in higher 
dimensions (45).

Delocalization enhancements increase 
with moderate disorder
dKMC’s computational savings allow parameter scans that inde-
pendently probe the roles of microscopic parameters. Figure 6 shows 
the IQE as a function of both the electronic coupling J, which in-
creases delocalization, and energetic disorder , which localizes states. 
In the limit of small J, when the electronic states are localized onto 
individual sites, dKMC and KMC agree. As J increases, causing 
delocalization, the efficiency of separation is always greater when 
delocalization is included using dKMC.

Figure 6 reveals the subtle effect of disorder on IQE. It is known 
that a modest amount of disorder can be beneficial for the separation 
of localized charges (11, 18, 29) because it provides energetically 
downhill pathways for the separation of many initial CT states. 
Figure 6 shows that delocalization extends the regime over which 
disorder is beneficial for charge separation, because it increases the 
overlap between electronic states allowing for polarons to move fur-
ther and faster. For extreme disorders, the delocalization enhance-
ment eventually decreases as the states become completely localized, 
giving agreement between dKMC and KMC.

DISCUSSION
Computational limitations
Despite the savings enabled by dKMC, it remains limited by com-
putational cost. Especially in three dimensions, dKMC is limited to 
smaller values of the electronic coupling (Fig. 4B) because the 
polaron states become more delocalized at higher J, requiring the 
diagonalization of large Hamiltonians. This problem is particularly 

acute in the two-particle Hilbert space, where Hamiltonian diagonal-
ization scales as  O( N box  18  )  in three dimensions. However, the results 
in Fig. 4B already reveal significant enhancements at low J, especially 
compared to lower dimensions, and we expect that the enhancement 
would continue to increase at higher couplings. Future computa-
tional advances may extend the results to higher J.

Possible extensions
In the future, dKMC could be extended to address other important 
questions in the physics of disordered materials. We envisage both 
extensions that relax some of our assumptions and applications to 
previously unexplored physical problems.

Most assumptions in the current version of dKMC could be relaxed. 
Doing so would likely lead to an increase in the predicted role of 
delocalization, because all the assumptions in this work are conserva-
tive, chosen to underestimate the extent and effects of delocalization.

The simplest extension would be the inclusion of non–nearest- 
neighbor couplings Jmn, m′n and Jmn, mn′ in Eq. 3. Doing so would not 
require any alterations to the dKMC algorithm but would result 

A

B

Fig. 6. Delocalization enhancements increase with moderate disorder. Parameter 
scan of IQEs of charge separation in 2D for (A) random and (B) thermalized CT states, 
as a function of electronic coupling J and disorder , using KMC (blue) and dKMC 
(orange). dKMC agrees with KMC in the low-J limit (when the states are localized) 
and always predicts IQEs greater than KMC as J increases. For both random and 
thermalized CT states, higher J always leads to higher IQE; the behavior as a function 
of disorder is more complicated, although modest amounts of disorder generally 
increase the IQE.
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in more delocalized polaron states, assuming the nearest-neighbor 
couplings are kept constant.

More generally, while we studied parameter ranges where the 
underlying sPTRE master equation is valid, more general master 
equations could be used in other cases. In particular, sPTRE can be 
inaccurate for systems weakly coupled to slow baths, when the secular 
and Markov approximations fail (44, 57, 71, 72). In those cases, elec-
tronic dynamics can be faster than bath relaxation, meaning that the 
bath modes are not fully relaxed, as assumed in Eq. 6. dKMC could 
be applied to those systems by replacing the fully displaced polaron 
transformation with its variational counterpart (57, 73–75), which 
would also allow ohmic or sub-ohmic baths to be treated.

Similarly, the secular approximation inherent in sPTRE could be 
relaxed. The secular approximation leads to a neglect of coherences 
between polaronic states, which reduces the number of elements of 
the density matrix being tracked from O(N2d) to O(Nd). In the regime 
we considered, this is a good approximation (44), because coherences 
between charge states are rarely induced and almost never survive 
long enough to affect long-time charge transport. Nevertheless, dKMC 
could be expanded to include coherences if desired and if the com-
putational resources allow it.

A final pair of assumptions in our treatment is that both the static 
disorder (Eq. 3) and the system-bath coupling (Eq. 5) are diagonal 
in the site basis. More generally, the Hamiltonian could be modified 
to include both off-diagonal disorder and off-diagonal system-bath 
couplings. The latter are particularly important in organic crystals, 
where the fluctuations of electronic couplings are an additional source 
of localization of the electronic states (76, 77). Of the two changes, 
off-diagonal disorder could be implemented without any changes 
to the dKMC algorithm by replacing the constant J with a site- 
dependent one. By contrast, off-diagonal system-bath coupling would 
require modifications to the equations of motion. Polaron theories 
generally rely on the ability of the polaron transformation to elimi-
nate diagonal system-bath couplings; therefore, they are unable to 
fully eliminate off-diagonal ones, and the remainder would have to 
be included in the perturbative treatment.

Two-body dKMC could also be extended beyond the separation 
of CT states. In particular, adding excitonic states to the simulation 
would give a quantum treatment of exciton dissociation both in the 
bulk and at interfaces. It could also describe exciton–to–CT state 
transfer and predict the nature of CT states that mediate charge sepa-
ration, obviating the need for the comparison between the random, 
thermalized, and overlap CT states introduced above. Doing so may 
explain and unite the seemingly disparate experimental observations 
of efficient separation requiring hot CT states and those occurring 
from thermalized CT states. The inclusion of excitons would, however, 
pose computational challenges, because it would require replacing 
nearest-neighbor electronic couplings with long-range excitonic ones. 
A process similar to exciton dissociation is singlet fission, and we expect 
that an excitonic dKMC code could be adapted to treat that prob-
lem as well, replacing the separated polarons with separated triplets.

Last, we anticipate that it will be possible to use dKMC to param-
eterize drift-diffusion simulations by computing the necessary 
dissociation and recombination rates. Doing so would allow a multi-
scale simulation of a broad range of processes in organic semicon-
ductors in a way that takes quantum effects into account.

In conclusion, our results explain how even small amounts of 
delocalization substantially assist polarons in escaping their large 
Coulomb attraction in OPVs. This is largely a kinetic effect, caused 

by increased overlap of electronic states, as opposed to the common 
hypothesis of a reduction in Coulomb binding. For instance, the initial 
delocalization across less than two molecules can suffice to make the 
separation of thermalized CT states five times more efficient. Further-
more, higher- dimensional effects, including greater delocalization, 
are particularly important to capturing the physics of charge sep-
aration. These results have been made possible by dKMC, a robust and 
computationally efficient technique for modeling charge-separation 
dynamics that includes all of the important features: three dimen-
sions, delocalization, disorder, and polaron formation. Overall, 
dKMC opens new avenues in the exploration of organic semiconduc-
tors by allowing a more comprehensive theoretical description than 
has been possible.

METHODS
Here, we extend dKMC from the one-particle mobility calculation 
(45) to the two-particle charge-separation problem by applying the 
polaron transformation to the Hamiltonian, establishing the sPTRE 
master equation for the two-particle picture and then establishing 
the dKMC procedure for charge separation.

Polaron transformation
Applying the polaron transformation to the total Hamiltonian 
(Eq. 1) yields

    ̃  H   =  e   S  H  e   −S  =    ̃  H    S   +    ̃  H    B   +    ̃  H    SB    (8)

The polaron-transformed system Hamiltonian is

   

   ̃  H    S   =   ∑ 
m∈D,n∈A

       ̃  E    mn  ∣m, n〉〈m, n∣+

         ∑ 
m≠ m ′  ∈D,n∈A

       m m ′      J  mn, m ′  n  ∣m, n〉〈 m ′  , n∣+    

     ∑ 
m∈D,n≠ n ′  ∈A

       n n ′      J  mn,m n ′    ∣m, n〉〈m,  n ′  ∣

    (9)

where     ~ E    mn   =  E  mn   −  ∑ k      ∣ g  mk  ∣   2  /    mk   −  ∑ k      ∣ g  nk  ∣   2  /    nk   , and the elec-
tronic couplings are renormalized by

     m m ′     =  e   − 1 _ 2  ∑ k     (     g mk  2   _ 
  mk  2  

 coth     mk   _ 2  +   g  m ′  k  2   _ 
   m ′  k  2  

 coth      m ′  k   _ 2   )     (10)

where  = 1/kBT and we take T = 300 K. The bath Hamiltonian is 
unchanged,     ̃  H    B   =  H  B   , while the polaron-transformed interaction 
Hamiltonian is

   
   ̃  H    SB   =   ∑ 

m≠ m ′  ∈D,n∈A
     J  mn, m ′  n  ∣m, n〉〈 m ′  , n∣ V  m m ′  +  

    
   ∑ 
m∈D,n≠ n ′  ∈A

     J  mn,m n ′    ∣m, n〉〈m,  n ′  ∣ V  n n ′    
    (11)

where

   
  V  m m ′     = exp  (   ∑ 

k
       

 g  mk  
 ─    mk    ( b mk  †   −  b  mk   )  )   

    
   exp  (   −  ∑ 

k
       

 g   m ′  k  
 ─     m ′  k    ( b  m ′  k  †   −  b   m ′  k   )  )   −    m m ′     

   (12)
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We apply two standard approximations to reduce the computa-
tional cost of summing over many bath modes: All sites couple to 
their baths with the same strength, gnk = gk, and the spectral density 
 J( ) =  ∑ k      g k  2  ( −    k  )  is replaced with a continuous function. In 
principle, one could choose structured spectral densities for specific 
organic molecules; here, we choose the widely used super-ohmic 
spectral density  J( ) =   _ 2    ( /    c  )   3  exp (−  /    c  )  (44, 51, 57, 78, 79), 
where  = 100 meV is the reorganization energy and c = 62 meV 
(44) is the cutoff frequency.

The two approximations simplify the renormalization factors in 
Eq. 10 to

     m m ′     =  =  e   − ∫0  
∞

   d J() _ 
    2 

  coth (/2)   (13)

Because  < 1, it always reduces the electronic coupling in Eq. 9, 
meaning that the polaron transformation reduces the delocalization 
of the electronic states (30).

Secular Redfield theory
We use the sPTRE master equation (44). As the polaron transfor-
mation reduces the system-bath coupling, we apply the second-order 
perturbative Redfield theory to     ̃  H    SB    (44). Following the secular ap-
proximation, which is accurate for most disordered materials of 
interest (44, 45), we obtain the sPTRE master equation

    d      (t) ─ dt   =  ∑ 
  ′  

      R    ′          ′    (t)  (14)

which describes the evolution of the populations of polaron states, 
found by diagonalizing     ̃  H    S   . This evolution is determined by the 
secular Redfield tensor R′

   R    ′     = 2Re (     ′  ,  ′     −      ′      ∑ 

        ,  ′    )  (15)

where the damping rates are

   

   ,  ′    ′     =   ∑ 
m∈D

     ∑ 
p,q, p ′  , q ′  ∈A

     J  mp,mq    J  m p ′  ,m q ′     〈∣m, p〉

     
〈m, q∣〉〈  ′  ∣m,  p ′  〉〈m,  q ′  ∣  ′  〉  K  pq, p ′   q ′    (     ′    ′    ) +

    
   ∑ 

n∈A
     ∑ 
p,q, p ′  , q ′  ∈D

     J  pn,qn    J   p ′  n, q ′  n   〈∣p, n〉
    

〈q, n∣〉〈  ′  ∣ p ′  , n〉〈 q ′  , n∣  ′  〉  K  pq, p ′   q ′    (     ′    ′    )

    (16)

with ′′ = E′ − E′ and

   K  pq, p ′   q ′    ( ) =  ∫0  
∞

     e   i   ⟨  ̃    ̂  V     pq  ( )   ̃    ̂  V      p ′   q ′    (0 ) ⟩  
B
   d  (17)

The bath correlation function, where the hats denote the interaction 
picture, is given by (51)

   ⟨  ̃    ̂  V     pq  ( )   ̃    ̂  V      p ′   q ′    (0 ) ⟩  
B
   =     2 ( e      pq, p ′   q ′    ()  − 1)  (18)

where pq, p′q′ = pp′ − pq′ + qq′ − qp′ and

  ( ) =  ∫0  
∞

   d   J() ─ 
    2 

  (cos ( ) coth ( / 2 ) − isin ( ) )  (19)

dKMC
In principle, the full evolution of the density matrix of both the elec-
tron and hole polarons could be tracked using the sPTRE master 
equation. However, doing so is expensive for three reasons. First, 
finding the polaron states requires diagonalizing     ̃  H    S   , which scales 
as O(N6d). Second, calculating all components of the Redfield tensor 
(Eq. 15) requires rates between all pairs of states, of which there are 
O(N4d). Last, calculating each of these rates requires computing the 
damping rates (Eq. 16), each of which includes a sum over O(N5d) 
terms. Therefore, propagating the full sPTRE master equation would 
scale roughly as O(N6d) + O(N9d).

To reduce the complexity, we use the four approximations de-
veloped for the original dKMC method (45). Summarized in Fig. 7 
and Algorithm 1, they are as follows:

1)  dKMC maps the master equation onto KMC (Fig. 7B). Instead 
of propagating the full density matrix, it tracks, and averages 
over, ntraj stochastic trajectories. The trajectories are found by 
hopping from one state to another, with the target chosen 
probabilistically in proportion to the corresponding Redfield 
rate. This procedure is continued until the polarons recombine, 

Algorithm 1. dKMC for charge separation.
Given parameters N, d, , J, , c, T, Rrecomb, rsep, nhops, 
n iter, and ntraj:

1. Calculate rhop and rove as described in (45).
2. For niter realizations of disorder:

        a. Generate Nd lattice of sites, with Nd/2 random donor  
         HOMO energies and Nd/2 random acceptor LUMO  
             energies.

    b. Create a polaron-transformed     ̃  H    S    containing pairs of      
                sites within a box of size   N box  

d   =  ( r  ove   +  r  hop  )   d   at the center 
              of the lattice. Diagonalize     ̃  H    S    to find the polaron  
             states, their energies, and the positions of electrons  
             and holes in every state.

    c. For ntraj trajectories:
         i. Set nsep ← 0 and choose an initial state  in any of the  

                   ways described in the text.
        ii. For nhops hops:
          A. Create a list L of all states ′ such that  ∣ C   

e   −  C   ′    
e  ∣+  

                              ∣  C   
h  −  C   ′    

h  ∣<  r  hop   .
             B. Calculate R′ for all ′ ∈ L using Eq. 15, neglecting 

                      all terms in Eq. 16 that contain overlaps of the form 
                   ⟨∣x, y⟩ such that  ∣ r  x   −  C   

e  ∣+ ∣ r  y   −  C   
h  ∣>  r  ove   .

           C. Calculate   k recomb       using Eq. 21 and append g to L.
       D. Set   S    ′     ←  ∑ 

=1    ′       R      for all ′ ∈ L and set T ←  
                     ∑′ ∈ LS′.

       E. Find ′ such that S′ − 1 < uT < S′, for uniform 
                      random number u ∈ (0,1], and update  ← ′.

            F. If  = g, exit the for loop.
            G. If  ∣ C   

e   −  C   
h ∣>  r  sep   , set nsep ← nsep + 1 and exit the 

                     for loop.
    H. If   C   

e    or   C   
h   is within Nbox/2 of the edge of the  

              current boxes, diagonalize a new     ̃  H    S    containing 
                       pairs of sites within two boxes of size   N box  d    centered 
                    at   C   

e    and   C   
h  .

    d. Calculate IQE = nsep/ntraj.
3. Calculate mean IQE by averaging all IQEs.

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 15, 2022



Balzer and Kassal, Sci. Adv. 8, eabl9692 (2022)     12 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 11

become separated by a distance rsep, or hop more than nhops 
times. The trajectory approach means that only outgoing rates 
need to be calculated before each hop, rather than between all 
pairs of states, reducing the number of rate to be calculated 
from O(N4d) to O(N2dnhopsntraj). The IQE is the percentage of 
the trajectories where polarons separate, averaged over niters 
realizations of disorder.

2)  Instead of calculating all outgoing rates from the current state, 
dKMC only calculates rates to states where the combined 
distance that the electron and holes hop is less than a hopping 
radius rhop (Fig. 7C). This approximation is justified by the small 
spatial overlap, and therefore Redfield rate, between states 
where either the electron or the hole (or both) hops far away. 
To calculate the combined hopping distance, we consider the 
positions of the electron and hole in state  to be the expectation 
values   C   

e   = ⟨∣ r   e ∣⟩  and   C   
h  = ⟨∣ r   h ∣⟩  and only calculate 

rates from state  to states ′ if  ∣ C   
e   −  C   ′    

e  ∣+ ∣ C   
h  −  C   ′    

h  ∣<  r  hop   . 
Doing so reduces the number of rates calculated at each hop 
from O(N2d) to  O( r hop  2d  ) . We use rhop values benchmarked for 
single-particle dynamics (45). The approximation is controlled 
by increasing or decreasing rhop to achieve the target accuracy.

3)  When calculating each rate, instead of summing over N5d 
quintuples (m ∈ D and p, q, p′, q′ ∈ A, or n ∈ A and p, q, p′, q′ ∈ 
D) in Eq. 16, we only sum over a truncated set (Fig. 7D), 
because Anderson localization of the wave functions makes 
overlaps between distant states small. To do so, we neglect all 
terms in Eq. 16 that contain overlaps of the form ⟨ ∣ x, y⟩ 

such that  ∣ r  x   −  C   
e  ∣+ ∣ r  y   −  C   

h  ∣>  r  ove   , where  is one of , , 
′, or ′, and x and y are any of m, n, p, q, p′, or q′. This reduces 
the number of terms in each rate calculation from O(N5d) to 
 O( r ove  

5d  ) . The accuracy is controllable by adjusting rove; we use 
rove values calculated in (45).

4)  Instead of diagonalizing the entire Hamiltonian to generate 
polaron states, we diagonalize on the fly smaller Hamiltonians 
encompassing pairs of sites within boxes of size   N box  d    sur-
rounding both polarons (Fig. 7E). The polarons can move 
within their boxes until either one gets too close to the edge of 
its box, when the boxes are moved and rediagonalized. As 
the computational bottleneck is often diagonalizing large 
Hamiltonians, we make the boxes as small as possible, choosing 
Nbox = (rhop + rove), and rediagonalize when either polaron is 
within Nbox/2 of the edge of its box. This reduces the diag-
onalization cost from O(N6d) to  O( N box  6d    n  rediag  )  for nrediag 
rediagonalizations.

Overall, dKMC reduces the computational complexity from 
O(N6d) + O(N9d) to  O( N box  6d    n  rediag   ) + O( r hop  4d    r ove  

5d    n  hops    n  traj  ) .

Recombination
In standard KMC, CT state recombination is often described with a 
constant rate Rrecomb, occurring when the electron and hole are on ad-
jacent sites across the donor-acceptor interface. For dKMC, we calculate 
the recombination rate of CT state  using Fermi’s golden rule,

   k recomb      = 2  ∣  ∑ 
(m,n)∈CT

   〈∣m, n〉〈m, n∣H∣g〉∣   2     recomb    (20)

A

D E

B C

rove

rove

rhop

Fig. 7. Computational components of dKMC for charge separation. (A) The full sPTRE master equation tracks the time-dependent evolution of the full charge density 
of the electron and hole through all polaron states. To avoid the computational cost of doing so, we apply four approximations (B to E). (B) KMC: We average many trajec-
tories, formed probabilistically from sequential hops. (C) Hopping radius rhop: We only calculate rates to polaron states where the center (black dots) of the electron and 
hole is close enough. (D) Overlap radius rove: When calculating transfer rates between polaron states, we only consider pairs of sites (lattice points) that are close to both 
states. (E) Diagonalizing on the fly: Rather than diagonalizing the full Hamiltonian, we diagonalize a subsystem surrounding each polaron. Once either polaron moves too 
close to the edge of its box, we diagonalize a new subsystem.
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where the sum goes over interfacial site pairs and recomb is the density 
of states. Assuming the interfacial pairs are coupled to the ground 
state with constant coupling ⟨m, n∣H∣g⟩ = Jrecomb, the rate becomes

   k recomb      =  R  recomb    ∣  ∑ 
(m,n)∈CT

   〈∣m, n〉∣   2   (21)

where Rrecomb = 2∣Jrecomb∣2recomb. Recombination therefore occurs 
at the ordinary Monte Carlo rate modified by the square of the sum 
of the CT state’s amplitudes on all interfacial site pairs. This result 
agrees with generalized Marcus theory for transfer between weakly 
coupled delocalized states (80) and with previous recombination 
studies (81). In calculations, we used Rrecomb = 1010s−1.
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