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ABSTRACT: Developing devices using disordered organic semiconductors
requires accurate and practical models of charge transport. In these
materials, charge transport occurs through partially delocalized states in an
intermediate regime between localized hopping and delocalized band
conduction. Partial delocalization can increase mobilities by orders of
magnitude compared to those with conventional hopping, making it
important for the design of materials and devices. Although delocalization,
disorder, and polaron formation can be described using delocalized kinetic
Monte Carlo (dKMC), it is a computationally expensive method. Here, we
develop jumping kinetic Monte Carlo (jKMC), a model that approaches the
accuracy of dKMC for modest amounts of delocalization (such as those
found in disordered organic semiconductors), with a computational cost
comparable to that of conventional hopping. jKMC achieves its computa-
tional performance by modeling conduction using identical spherical polarons, yielding a simple delocalization correction to the
Marcus hopping rate that allows polarons to jump over their nearest neighbors. jKMC can be used in regimes of partial
delocalization inaccessible to dKMC to show that modest delocalization can increase mobilities by as much as 2 orders of magnitude.

Charge transport is easily modeled in perfectly ordered
materials, where charges travel in delocalized bands, and

in perfectly disordered ones, where localized charges hop from
one site to another. However, many promising materials, such
as organic semiconductors, lie in the intermediate transport
regime, where charge transport occurs by hops between
partially delocalized states.1−3 In these materials, both static
disorder4 and polaron formation5 localize charges, and partially
delocalized states arise when this localization is insufficient to
reduce the state to one molecule. Understanding intermediate-
regime transport is especially important in organic semi-
conductors, where it underpins the most conductive
disordered materials and devices.6,7

State-of-the-art models of partially delocalized charge
transport use quantum-mechanical treatments, which can
make them computationally expensive. The most detailed
models are atomistic simulations such as fragment orbital-
based surface hopping6,8−10 and coupled electron−ion
dynamics.11,12 Coarse-graining to reduce computational cost
gives effective-Hamiltonian models13 such as transient local-
ization,14,15 an adaptive hierarchy of pure states equations,16

density matrix renormalization group approaches,17,18 network
approaches,19,20 modified Redfield approaches,21 and polaron-
transformed Redfield approaches.22,23 Nevertheless, the
computational cost of these models limits them to small
systems (usually in one or two dimensions) or short time
scales. Recently, we developed delocalized kinetic Monte Carlo
(dKMC), a quantum-mechanical model that can describe

charge transport in disordered materials on mesoscopic scales
and in three dimensions while including the three essential
ingredients: disorder, partial delocalization, and polaron
formation.3,24 dKMC demonstrates the importance of
delocalization in disordered charge transport, explaining
order-of-magnitude increases in mobility over that of conven-
tional hopping.3 However, despite the large computational
savings of dKMC compared to other quantum-mechanical
treatments, it remains expensive, making it impractical for
simulations of highly delocalized states in three dimensions or
on device scales, where the cost scales exponentially with the
number of particles.
Here, we develop jumping kinetic Monte Carlo (jKMC), a

practical model of intermediate-regime charge transport of
modestly delocalized carriers, whose speed is comparable to
that of hopping models and whose accuracy is comparable to
that of dKMC. We do so by treating the partially delocalized
states as a lattice of identical, spherical polarons (Figure 1),
allowing us to avoid the most computationally expensive
aspects of dKMC. The result of jKMC is a simple
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delocalization correction to the Marcus hopping rate that can
be included in any transport model. Applied to charge
transport, it reveals even greater mobility enhancements for
states that are too delocalized to be modeled in dKMC.
Conventional models of charge transport in disordered

materials commonly use kinetic Monte Carlo (KMC)
simulations to model hopping between an array of sites,
usually a lattice. Disorder is commonly introduced by assigning
to each site an independent random energy from a Gaussian
density of states (DOS) of width σ.1,25 The probability of each
hop and the time taken are determined by the hopping rates,
usually expressed using nearest-neighbor Marcus or Miller−
Abrahams rates
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where J is the electronic coupling between neighboring sites, λ
is the reorganization energy, ν0 is the hopping attempt
frequency, T is the temperature, Ei and Ef are the energies of
the initial and final sites, respectively,26,27 and we have set ℏ =
1. These rates are widely used due to their simplicity, low
computational cost, and ability to explain, for example, the
electric-field and temperature dependence of mobilities in
certain disordered materials.25,28−31

The nearest-neighbor rates presented above are often
modified to model partially delocalized charge transport by
using them to simulate non-nearest-neighbor hopping. To do
so, kifMarcus and kifMA are usually multiplied by a phenomeno-
logical tunnelling factor, e−2γdif, where γ is a fitting parameter
called the inverse localization radius and dif is the hopping
distance.25,27,30 The tunnelling factor was originally developed
for impurity conduction in crystalline materials, where it
correctly captures the overlap of exponentially decaying tails of
distant impurity sites. However, this justification is not valid for
densely packed organic semiconductors,32 where there are
many sites in the proximity of each other. However, we will see
that jKMC results in an expression similar to the tunnelling

factor for realistic amounts of delocalization in organic
semiconductors.
Instead of a phenomenological factor, dKMC models the

fundamental processes giving rise to partially delocalized
transport.3 dKMC uses the secular polaron-transformed
Redfield equation (sPTRE) to model transport between
delocalized polarons.23 It assumes an effective, tight-binding
Hamiltonian for a lattice of sites, where each site is linearly
coupled to an identical, independent bath of harmonic
oscillators. The polaron transformation is applied to this
Hamiltonian, reducing the system−bath coupling and allowing
it to be treated by second-order perturbative Redfield theory.
Applying this treatment to a system with normally distributed
energies and nearest-neighbor electronic couplings J yields the
rate of hopping from polaron ν to polaron ν′

R J i j i j K2 Re ( )
i j i j

ij i j
, , ,

2
( , )= [ | | | | ]

(3)

where ν and ν′ are eigenstates of the polaron-transformed
Hamiltonian, ⟨i, j⟩ and ⟨i′, j′⟩ are nearest-neighbor pairs of
sites, ωνν′ = Eν − Eν′ is the energy difference between the
polarons, and KΔ(ij,i′j′)(ω) describes the residual system−bath
coupling in the polaron frame, as described in section S1 of the
Supporting Information. In calculating KΔ(ij,i′j′)(ω), we assume
a super-ohmic spectral density J( ) ( / ) e

4 c
3 / c= ,

where λ is the reorganization energy and the cutoff
frequency (ωc) is set to 62 meV.

23 This spectral density is
commonly assumed for disordered organic semiconduc-
tors;22,33−35 however, any spectral density can be employed.
Calculating the hopping rate Rνν′ in dKMC requires

diagonalizing disordered Hamiltonians to calculate the
delocalized polaron states |ν⟩, which have irregular shapes
and off-lattice positions. Diagonalizing these Hamiltonians
becomes the computational bottleneck for dKMC in three
dimensions, and at large J values, the states become too large
to be contained within a Hamiltonian that can be diagonalized.
jKMC avoids the computational bottleneck of dKMC by

avoiding the calculation of all of the polaron states. Instead, it
assumes that the polaron wave functions are identical and
spherically symmetric. We also assume that the polarons are
centered on a cubic lattice with spacing a and have
independent and normally distributed energies (with a mean

Figure 1. jKMC model of partially delocalized charge transport in disordered materials. (a) The starting point of jKMC is a lattice of sites with
disordered energies (different colors) and nearest-neighbor couplings J, coupled to the environment (motion lines). (b) Diagonalizing the
Hamiltonian yields delocalized polarons with a distribution of shapes and sizes. A suitably chosen neighborhood (dashed line) is used to average
the polaron sizes into a uniform size for jKMC. (c) jKMC uses the neighborhood-averaged polaron size to represent partially delocalized transport
as hopping between uniformly sized spherical polarons. This delocalization allows polarons to jump over their nearest neighbors.
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of 0 and a standard deviation of σ) and that their shapes follow
the exponential localization seen in the Anderson model.4

Specifically, we take

i
k
jjjjj

y
{
zzzzzA

d
r

iexp
i

i

deloc
| = |

(4)

where diν is the distance between the center of polaron ν and
site i, rdeloc is the delocalization radius that characterizes the
size of the wave function, and A = [∑i exp(−2diν/rdeloc)]−1/2 is
the normalization.
Parametrizing jKMC requires choosing a value of rdeloc. Our

objective is to choose the rdeloc that will yield accurate
mobilities. In disordered materials, rdeloc should depend on
mean energy ⟨E⟩ of the polarons because polaron sizes
decrease (on average) as they relax to more localized states
lower in the disordered DOS. For example, rdeloc should be
larger for an ensemble of randomly occupied polaron states
(where ⟨E⟩ = 0 and many large states in the middle of the
DOS are occupied) than for an ensemble of polarons that have
reached thermal equilibrium (where ⟨E⟩ = −σ2/kBT and the
occupied states are mostly the localized traps).1

To choose rdeloc, we relate it to a readily calculated measure
of delocalization, the inverse participation ratio
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which roughly equals the number of sites over which polaron ν
is delocalized. A localized wave function has an IPR of 1, while
a wave function evenly spread across N sites (⟨i|ν⟩ = N−1/2)
has an IPR of N. The spherical polarons of eq 4 have an IPR of
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an equation that allows us to calculate an rdeloc that reproduces
a given IPR.
We set rdeloc using eq 6 on the basis of the mean IPR of the

polaron states that participate in charge transport at a given
⟨E⟩. This IPR is calculated through an approach we call
neighborhood averaging. First, we note that the averaging of
the polaron IPRs should be thermally weighted because
transport is driven by relaxation to thermal equilibrium. A
complete thermal average requires that every state be
accessible; however, during the initial stages of transport in a
disordered material, the polaron is unable to completely
explore the DOS. Instead, if a polaron can explore only a local
neighborhood of N polaron states until a particular time, we
take the thermal averages of polaron states within that
neighborhood. Therefore, we define the effective IPR and
the effective energy as
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where IPRν and Eν are the polaron IPRs and energies,
respectively, obtained from the diagonalization of the model
Hamiltonian,3 Z = ∑ν=1

N exp(−Eν/kBT) is the partition

function, and the average (angle brackets) is taken over an
ensemble of disordered energetic landscapes (1000 instances
in our calculations). Equations 7 and 8 allow us to obtain an
rdeloc for any ⟨E⟩ in two steps. First, for a given ⟨E⟩, we
determine the appropriate neighborhood size N using eq 8,
and second, we use that same N in eq 7 to determine the IPReff
that can be converted into rdeloc using eq 6.
With rdeloc in hand, we can now substitute the spherical-

polaron approximation in eq 4 into the delocalized polaron
hopping rate (eq 3). To obtain a simple rate expression, we
also assume the high-temperature limit (kBT ≫ ωc), because
many organic semiconductors operate close to this limit.36−38

In addition, the high-temperature limit is the regime of validity
of ordinary Marcus theory, and using it reveals the relationship
between ordinary KMC and jKMC. Using the spherical-
polaron and high-temperature approximations, we obtain the
jKMC rate between any two polarons (derivation in section S1
of the Supporting Information)

k kjKMC Marcus= (9)

where kνν′
Marcus is the Marcus rate of eq 1 from polaron ν to ν′ as

if they were nearest neighbors and ξνν′ is the delocalization
correction
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where the sum runs over nearest-neighbor pairs of sites i and j.
Hence, the effect of delocalization is to make Marcus rates
long-range in a way that depends straightforwardly on
delocalization radius rdeloc.
In the low-delocalization limit, ξνν′ can be simplified by

taking only the dominant exponential terms in eq 10, which
leads to the simplified jKMC rate (derivation in section S2 of
the Supporting Information)
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Simplified jKMC is similar to inserting the phenomenological
correction e−2γdif into the Marcus rate and can be considered as
a rigorous justification of this correction in the limit of small
delocalization. However, there are two important differences.
First, the distance-dependent exponent is offset by the lattice
constant, which ensures that the correct Marcus rate is
reproduced for nearest neighbors. Second, there is a new pre-
exponential factor dνν′/a that accounts for the number of terms
significantly contributing to the sum in eq 10.
The jKMC rates kνν′

jKMC can now be used to simulate polaron
dynamics. Disordered materials show dispersive transport
(mobilities decreasing over time as the polarons relax within
the DOS),31,37,39,40 which affects how mobilities should be
calculated. Conventionally, mobilities in dispersive systems
have been calculated at a chosen time tμ (Figure 2a); however,
this approach can lead to unrealistic comparisons, because it
can predict lower mobilities for systems with stronger
couplings J, where polarons can reach deeper traps in the
DOS within the same tμ. To avoid this pitfall, we calculate the
mobilities of polarons that have relaxed (on average) to a
chosen target energy Eμ [i.e., for which ⟨E⟩ = Eμ (see Figure
2b)]. In particular, in jKMC, we choose the value of rdeloc that
is consistent with this target Eμ.
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To simulate transport, we initialize a polaron in the center of
the lattice and calculate 10 KMC trajectories1,25 over 10 000
disordered landscapes using the jKMC rate. During these
simulations, we track the squared displacement r2(t) of the
polaron and its energy E(t). We average these quantities over
the ensemble of trajectories to obtain mean-square displace-
ment ⟨r2(t)⟩ and mean energy ⟨E(t)⟩ of the diffusing polaron.
We then calculate the mobility at time tE at which ⟨E(tE)⟩ = Eμ
using

t e
dk T t

r t( )
2

d
d

( )E
t tB

2

E

=
= (12)

where e is the electron charge and d is the dimension.
Before discussing jKMC mobilities, we show that the

neighborhood-averaging approach reproduces the mean IPRs
obtained from full dKMC calculations (Figure 3). In dKMC,
the mean IPR ⟨IPRdKMC⟩ and mean energy ⟨EdKMC⟩ of the
occupied states can be obtained as functions of time by
simulating and averaging transport over ensembles of
diagonalized polaron landscapes. Therefore, Figure 3 shows
that the neighborhood-averaging approach can be used to
predict the mean IPR (and, therefore, rdeloc) across a wide
range of parameters without expensive dKMC calculations.
jKMC reproduces the large delocalization enhancements

seen in dKMC over a wide range of electronic couplings
(Figure 4a,b). In particular, for the parameters chosen, it
reproduces the 2 order of magnitude enhancement over KMC.
jKMC can also describe regimes inaccessible to dKMC,
especially transport involving large electronic couplings in

three dimensions, where it predicts even larger enhancements
in mobility.
The delocalization enhancements of jKMC remain large

over a range of Eμ in both two and three dimensions (Figure
4c,d). The chosen range of Eμ corresponds to the several order
of magnitude differences in transport time tE (Figure 4e,f),
showing that the delocalization enhancement persists over a
broad range of time scales. For the parameters tested, jKMC
agrees with dKMC to a factor of ∼2. Overall, jKMC provides
excellent accuracy considering the simplicity of the method,
typical uncertainties in the input parameters, and the fact that
the mobilities span orders of magnitude and are under-
estimated by KMC by as much as 100 times.
The values of rdeloc used in jKMC (Figure 4g,h) are within

the typical range of its analogue γ−1 sometimes used in Marcus
or Miller−Abrahams models. For the parameters used in
Figure 4, we predict rdeloc/a within a range of 0.2−0.6, whereas

Figure 2. Calculating mobilities at a target energy. (a) Convention-
ally, mobilities in dispersive materials are calculated at a particular
time tμ from the slope of mean-squared displacement ⟨r2⟩ as a
function of time. This approach can unrealistically predict smaller
mobilities for carriers with higher electronic couplings J because
polarons with larger J values can move faster and reach deeper traps in
the DOS (E1 < E2) within a given tμ. (b) This problem is avoided by
calculating mobilities at a particular energy Eμ. Here, the mobilities
are calculated at times t1 and t2 when the respective simulations reach
the target energy.

Figure 3. Neighborhood-averaging approach predicts accurate IPRs.
In both (a) two and (b) three dimensions, the neighborhood-
averaging approach gives the effective IPR (dashed lines) as a function
of mean polaron energy ⟨E⟩. These results reproduce the mean IPR of
occupied states in dKMC (points) obtained using fully dynamical
simulations of polarons relaxing in the DOS. The right-most point
corresponds to time zero, and subsequent points (toward lower ⟨E⟩
and lower IPR) correspond to progressively longer dKMC
simulations. The apparent maximum in IPReff around an ⟨E⟩ of
−100 meV is a numerical artifact caused by boundary effects when
averaging over very small neighborhoods required at energies close to
zero; this effect is negligible below approximately ⟨E⟩ = −200 meV,
which includes the points relevant for this work. Results are calculated
for σ = 150 meV, λ = 200 meV, and T = 300 K.
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the values of γ−1/a are typically in the range of 0.1−1.28,37 In
other words, jKMC is a microscopic justification of
phenomenological γ−1 parameters that are often inserted into
hopping models to enable them to fit experimental results.
Figure 5a shows that the delocalization correction can

increase mobilities by several orders of magnitude over KMC
hopping (rdeloc = 0). In Figure 5a, rdeloc is varied independently,
isolating its role from those of the other material parameters.
The IPRs corresponding to rdeloc are shown in Figure 5b, which
remain modest for the significant enhancements in mobility.
The results of simplified jKMC are also shown in panels a

and b of Figure 4 (and in Figure S3), showing that eq 11 can
be an acceptable approximation for typical delocalizations in
disordered organic semiconductors. The simplified jKMC rate
leads to the same order of magnitude mobilities as dKMC;
however, it tends to slightly systematically overestimate jKMC.
Despite its overall accuracy and the ability to predict the

correct trends, jKMC has systematic errors in certain regimes.

Panels c and d of Figure 4 show jKMC overestimates
mobilities on short time scales (shallow Eμ) and under-
estimates them at long time scales (deep Eμ). These errors are
related to the assumption of a uniform polaron size, which
neglects the effect of the distribution of polaron sizes on
mobility. At short time scales, where the distribution is wide
and the effective IPR is large, jKMC overestimates the escape
from localized traps. In contrast, on long time scales where the
distribution has narrowed and the effective IPR is small, jKMC
underestimates the escape from traps into highly delocalized
states. The boundary between these regimes depends on
coupling J, as shown in panels c and d of Figure 4.
jKMC achieves a computational cost between those of KMC

and dKMC. While based on dKMC, jKMC avoids dKMC’s
computational bottleneck of having to repeatedly diagonalize
Hamiltonians during the dynamics. Instead, it requires only an
up-front diagonalization to calculate the effective IPR.
Furthermore, jKMC can achieve neighborhood averaging by

Figure 4. jKMC reproduces the large delocalization enhancements explained by dKMC, including the 2 order of magnitude enhancements in
mobility over KMC in (a) two and (b) three dimensions. jKMC reproduces dKMC mobilities where the latter are known and extends beyond them
to high levels of delocalization in three dimensions. The simplified jKMC rate also predicts mobilities on the same order of magnitude as dKMC.
Mobilities are calculated at Eμ = −2.5σ with σ = 150 meV, λ = 200 meV, and T = 300 K. (c and d) jKMC reproduces the delocalization
enhancements of dKMC over KMC across a range of Eμ values to a factor of ∼2. (e and f) Times tE taken to reach target energy Eμ show that the
range of Eμ in panels c and d spans the typical time scales of mesoscopic charge transport. (g and h) Delocalization radii that parametrize jKMC.
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diagonalizing fewer and smaller lattices than need to be
diagonalized in dKMC. Smaller lattices suffice in jKMC
because the effective IPR is heavily weighted toward smaller,
lower-energy polarons (see section S4 of the Supporting
Information). In contrast, dKMC is designed to calculate the
dynamics of any polaron on the lattice, including highly
delocalized states that require large lattices to describe.
Nevertheless, the up-front diagonalization remains the
computational bottleneck of jKMC at high electronic
couplings. However, it needs to be done only once before
running a routine KMC calculation using jKMC rates.
The approximations in jKMC allow it to demonstrate the

important role of delocalization in a wide range of organic
semiconductors, and the simplicity of the resulting equations
provides clear insight into how the microscopic parameters
affect the mesoscopic dynamics. However, most of the
approximations could be relaxed to extend jKMC to other
regimes.
The distinguishing assumption of jKMC is the uniformly

sized spherical polarons, and the assumptions of both uniform
size and shape could be relaxed. Polaron sizes could be made
non-uniform to capture the distribution of polaron IPRs and
their correlation to the polaron energies (i.e., lower-energy
states are generally more localized than those in the middle of
the DOS). This could be achieved by using a different rdeloc for

each polaron, as a function of its energy. However, doing so
would require both keeping track of the polaron IPR
distribution and modifications to hopping rates to account
for different initial and final values of polaron rdeloc. Similarly,
the assumption of spherical polarons could be relaxed without
using the raw polaron wave functions obtained by diagonaliza-
tion. Spherical polarons are appropriate for materials with
isotropic couplings; by contrast, anisotropic couplings, such as
those in polymers or oligoacene crystals, could be described
using ellipsoidal polarons. Doing so would involve incorporat-
ing different values of rdeloc and J for each spatial direction (e.g.,
along a polymer chain or between chains), in a manner similar
to previous approaches using Marcus and Miller−Abrahams
rates.37

The high-temperature assumption could also be relaxed, at
the cost of losing the simplicity and intuition of jKMC. In
particular, it is possible to directly use the sPTRE rates in eq 3
with the spherical polarons of jKMC but without taking the
high-temperature limit of KΔ(ij,i′j′)(ω). These equations are
given as intermediate results in section S1 of the Supporting
Information.
Other approximations in jKMC are shared by the

implementations of the underlying sPTRE and dKMC
theories. If they were relaxed, the sPTRE equations of motion
might change, which would imply consequent changes in
jKMC dynamics. For example, it would be possible to extend
jKMC to accommodate long-range electronic couplings, a non-
Gaussian DOS,28,32,41 or spatial site-energy correlations,28,42

regimes that are rarely explored with sPTRE or dKMC. There
are also approximations that are inherited from sPTRE and
dKMC. For example, sPTRE assumes fixed electronic
couplings, which could be relaxed to include both disordered
couplings and off-diagonal fluctuations that can dominate
transport in energetically ordered materials.43,44

In the future, jKMC will provide the opportunity to
determine the effect of delocalization on other optoelectronic
processes in disordered materials or on a device level, regimes
that would be too complicated to explore using dKMC or any
other quantum-mechanical method.24 For example, we expect
that jKMC can be extended to modeling multiple particles,
including charge separation and recombination processes.
These simulations could be used to parametrize drift-diffusion
simulations of delocalized charges, connecting the mesoscopic
dynamics to a complete, multiscale device model.
In conclusion, jKMC is a practical model of partially

delocalized transport that approaches the accuracy of fully
quantum approaches with the cost of classical hopping. jKMC
includes a simple correction to the Marcus hopping rate, based
on a method for estimating the delocalization radius. It
reproduces the large increases in mobility predicted by dKMC
but can also simulate larger electronic couplings and
delocalization in three dimensions. These factors make
jKMC an attractive model that could easily be included in
any KMC simulation of a disordered material, including future
device-scale models that take into account partially delocalized
charge transport.
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Figure 5. jKMC delocalization correction can produce large increases
in mobilities. (a) In both two and three dimensions, varying rdeloc
independently of J increases the mobility by several orders of
magnitude. Therefore, adding delocalization correction ξνν′ can easily
reproduce large mobilities where conventional KMC hopping fails.
Results are calculated at Eμ = −2.5σ for J = 75 meV, σ = 150 meV, λ =
200 meV, and T = 300 K. (b) The jKMC IPR depends on only rdeloc
and can be varied to probe the effect of delocalization. Modest
amounts of delocalization produce order of magnitude enhancements
in panel a.
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jKMC rate derivation (section S1), simplified jKMC rate
derivation (section S2), simplified jKMC results
(mobility enhancements and simulation times) (section
S3), and effective IPR convergence (section S4) (PDF)
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S1. JKMC RATE DERIVATION

The foundation of jumping kinetic Monte Carlo (jKMC) is the secular polaron transformed Redfield equation
(sPTRE) [1, 2], which provides the hopping rate from any polaron ν to polaron ν′ as

Rνν′ =
∑

〈i,j〉,〈i′,j′〉

2J2 Re
[
〈ν|i〉 〈j|ν′〉 〈ν′|i′〉 〈j′|ν〉K∆(ij,i′j′) (ωνν′)

]
, (S1)

where 〈i, j〉 and 〈i′, j′〉 are nearest-neighbour pairs of sites, J is the nearest-neighbour electronic coupling, ωνν′ =
Eν − Eν′ is the energy difference between polarons, and

K∆(ij,i′j′)(ω) =

∫ ∞
0

dτ eiωτ 〈V̂ij(τ)V̂i′j′(0)〉B (S2)

is the half-range Fourier transform of the bath correlation function

〈V̂ij(τ)V̂i′j′(0)〉B = κ2(e−∆(ij,i′j′)φ(τ) − 1), (S3)

where ∆(ij, i′j′) = δii′ − δij′ + δjj′ − δji′ ,

κ = exp

(
−
∫ ∞

0

dω

π

J(ω)

ω2
coth

(
ω

2kBT

))
, (S4)

and

φ(τ) =

∫ ∞
0

dω

π

J(ω)

ω2

(
cos(ωτ) coth

(
ω

2kBT

)
− i sin(ωτ)

)
. (S5)

We assume that the polaron wavefunctions are identical, spherically symmetric, and exponentially decaying in
the site basis,

|ν〉 = A
∑
i

exp

(
− diν
rdeloc

)
|i〉 , (S6)

where diν is the distance between the centre of the spherical polaron ν and site i, rdeloc is the delocalisation radius
that characterises the size of the wavefunction, and the normalisation prefactor is A = (

∑
i exp(−2diν/rdeloc))

−1/2
.

Substituting the spherical-polaron approximation into the sPTRE yields

Rνν′ =
∑

〈i,j〉,〈i′,j′〉

2J2A4 Re
[
K∆(ij,i′j′) (ωνν′)

]
exp

(
−diν + djν′ + di′ν′ + dj′ν

rdeloc

)
. (S7)

To simplify this expression, we assume the high-temperature limit (kBT � ωc) in eq. (S5), using coth(ω/2kBT ) ≈
2kBT/ω to obtain

φ(τ) =

∫ ∞
0

dω

π

J(ω)

ω2

(
2kBT

ω
cos(ωτ)− i sin(ωτ)

)
. (S8)

φ(τ) enters the integral in eq. (S2) through an exponential, meaning that the integral will be dominated by
contributions where φ(τ) achieves the maximum real values. This maximisation occurs when cos(ωτ) ≈ 1, i.e., when
ωτ � 1. Therefore, we take the Taylor expansions of cos(ωτ) and sin(ωτ) in eq. (S8) to yield

φ(τ) = 2kBTx3 − (kBTτ
2 + iτ)x1, (S9)



S2

where

xn =

∫ ∞
0

dω

π

J(ω)

ωn
(S10)

Similarly, the high-temperature limit of eq. (S4) is

κ2 = e−4kBTx3 , (S11)

which is exponentially small at high T .
Therefore, in the high-temperature limit, the bath correlation function becomes

〈V̂ij(τ)V̂i′j′(0)〉B = e−4kBTx3

(
e−∆(ij,i′j′)(2kBTx3−(kBTτ

2+iτ)x1) − 1
)
, (S12)

where the coefficient ∆(ij, i′j′) assumes integer values between −2 and 2. Of these, the ∆(ij, i′j′) = −2 contributions
(i.e., i = j′ and j = i′) dwarf the others, and are the only ones negative and large enough to ensure that the κ2
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Figure S1. Comparison of different K∆(ij,i′j′)(ω), shown as functions of the polaron energy difference ωνν′ . Results are
calculated using the spectral density J(ω) given in the main text for λ = 200meV and (a) the parameters in this work
(T = 300K, ωc = 62meV), (b) at higher temperature (T = 3000K), and (c) at lower cutoff frequency (ωc = 31meV).
At high temperatures or low cutoff frequencies, four of the five K∆(ij,i′j′)(ω) become negligible, and the surviving K−2(ω)

approaches kMarcus(ω)/2J
2 (shown in purple).
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prefactor does not make the entire expression exponentially small in T . In the high-temperature limit, the other
four possibilities of ∆(ij, i′j′) give negligible results, as shown in fig. S1. Keeping only the ∆(ij, i′j′) = −2 terms in
eq. (S7) yields

Rνν′ = 2J2A4 Re [K−2 (ωνν′)]
∑
〈i,j〉

exp

(
−2(diν + djν′)

rdeloc

)
, (S13)

where

K−2(ω) =

∫ ∞
0

dτ eiωτ
(
e−2kBTτ

2x1−2iτx1 − e−4kBTx3

)
. (S14)

This expression can be further simplified by neglecting the last term (which is small at high T ), by noting that
2x1 = λ (the definition of reorganisation energy), and by extending the lower limit of the integral to −∞ (because
the real part of the integrand is even) to give

Re [K−2(ω)] =
1

2

∫ ∞
−∞

dτ ei(ω−λ)τe−λkBTτ
2

=

√
π

4λkBT
exp

(
− (ω − λ)2

4λkBT

)
=
kMarcus(ω)

2J2
, (S15)

where kMarcus is the Marcus hopping rate. Substituting this expression for K−2(ωνν′) into eq. (S13) gives eq. (9) in
the main text.

S2. SIMPLIFIED JKMC RATE DERIVATION

The delocalisation correction ξνν′ for hopping between polarons ν and ν′ can be simplified in the limit of low
delocalisation to yield the simplified jKMC rate. As described in the main text,

ξνν′ = A4
∑
〈i,j〉

exp

(
−2(diν + djν′)

rdeloc

)
. (S16)

For small rdeloc, the sum of exponentials in eq. (S16) is dominated by the terms that minimise the distance diν +djν′ ,
where i and j are nearest neighbours. As shown in fig. S2, there are dνν′/a dominant terms with the minimal
diν + djν′ = dνν′ − a. Because A = 1 in the limit of localised charges, we obtain the simplified jKMC delocalisation
correction

ξSimplified
νν′ =

dνν′

a
exp

(
−2 (dνν′ − a)

rdeloc

)
. (S17)

ν ν'

a

dν'ν

i j

Figure S2. The arrangement of sites whose contribution dominates the jKMC rate. The dominant terms in the
sPTRE minimise the distance diν + djν′ (shown in blue). On the cubic lattice, the simplest case is if the initial and final
states ν and ν′ lie in the same row (or column) of the lattice, as shown above. In that case, there are dνν′/a positions for the
nearest-neighbours i and j which minimise this distance to dνν′ − a, and which occur when all four points are collinear. We
use the same result (dνν′/a positions with total distance dνν′ − a) even if ν and ν′ do not lie in the same row or column.
This approximation is justified because the particular shape of the lattice is not an essential part of the jKMC model.
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S3. SIMPLIFIED JKMC RESULTS

The mobility enhancements and times taken to reach the target energy Eµ for simplified jKMC are shown in
fig. S3.

S4. EFFECTIVE IPR CONVERGENCE

Figure S4 shows that the lattices diagonalised in jKMC can be much smaller than those in dKMC. Smaller lattices
are much easier to diagonalise, giving jKMC a significant computational advantage over dKMC.
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Figure S3. Simplified jKMC produces mobilities on the same order of magnitude as jKMC. In both (a) two and
(b) three dimensions, simplified jKMC reproduces jKMC mobilities to about a factor of 2 (for the parameters tested), but
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contribute to transport at 〈E〉. Here, Nbox ≈ 20 is sufficient for convergence for 〈E〉 below about −300meV. By contrast,
dKMC requires boxes large enough to converge the mean IPR of all states, corresponding to 〈E〉 = 0, which would require
substantially larger Nbox. (b) Enlarged view of panel a for the values of 〈E〉 considered in this paper. Here, smaller Nbox

suffice to achieve convergence because the effective IPR is a thermal average, mostly sensitive to low-energy, localised states
that are adequately described using small lattices. Results are shown for three dimensions, J = 75meV, σ = 150meV,
λ = 200meV, and T = 300K.


