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Abstract

Accurate computational screening of candidate materials promises to accelerate the discovery of
higher-efficiency organic photovoltaics (OPVs). However, modelling charge separation in OPVs is
challenging because accurate models must include disorder, polaron formation, and charge delocal-
isation. Delocalised kinetic Monte Carlo (dKMC) includes these three essential ingredients, but it
suffers from high computational cost. Recently, we developed jumping kinetic Monte Carlo (jKMC),
a computationally cheap and accurate model of delocalised charge transport that models transport
over a lattice of identical, spherical polarons. Here, we extend jKMC to describe the separation
of a charge-transfer state, showing that this simplified approach can reproduce the considerable
improvements in charge-separation efficiencies caused by delocalisation and first seen in dKMC.
The low computational cost and simplicity of jKMC allows it to be applied to parameter regimes
intractable by dKMC, and ensures jKMC can be easily incorporated into any existing KMC model.

dKMCjKMCKMC
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Organic photovoltaics (OPVs) benefit from the chem-
ical tunability of organic molecules and polymers, which
allow them to be optimised for specific applications [1].
However, exploring the large chemical space to discover
new OPV materials is a monumental task, especially
when coupled with the experimental effort required to
construct and test OPV devices. This task can be as-
sisted by fast and accurate computational screening to
help identify new candidate materials [2].

A critical performance measure for any OPV is the
separation efficiency of electron-hole pairs. OPVs are typ-
ically blends of electron-donor and -acceptor materials
self-assembled into domains [1, 3]. Light absorption cre-
ates an exciton that diffuses towards the donor-acceptor
interface, where it dissociates to form a Coulombically
bound charge-transfer (CT) state. The separation of
CT states into free charges can occur with near-unity
internal quantum efficiency (IQE) [4], despite the avail-
able thermal energy being an order of magnitude smaller
than the Coulomb binding energy [5, 6].

Charge delocalisation is widely thought to enhance
the IQE of charge separation, a view supported by ex-
perimental observations of fast and efficient separation
through delocalised CT states [7–12]. Delocalisation
in OPVs is partial: disorder [13] and polaron forma-
tion [14, 15] localise charges, and partially delocalised
states arise when this localisation is insufficient to reduce
the state to one molecule. The open question is whether
and how the typically small amount of delocalisation
can improve device performance.

However, delocalisation considerably complicates the
computational task of predicting charge-separation effi-
ciencies, which requires modelling the dynamics of Cou-
lombically bound electrons and holes as they separate.
The partial delocalisation in OPVs means that charge

dynamics typically occurs in the intermediate regime
between the theoretically well-understood limits of delo-
calised band conduction and localised hopping [1, 16–18].
Including delocalisation in OPV modelling is essential
because conventional localised-hopping models struggle
to explain the near-unity IQEs observed experimentally.

The most complete charge-separation models for
OPVs are atomistic simulations [19–22], used to model
quantum-mechanical dynamics on small systems and
short timescales. These detailed, ab initio models ex-
plain the ultrafast dissociation of electron-hole pairs, but
cannot reach the mesoscopic scales relevant to device
performance due to the large computational cost of track-
ing wavefunctions in an exponentially growing Hilbert
space. For longer timescales, effective-Hamiltonian mod-
els of charge separation [18, 23, 24] can simulate larger
systems by tracking fewer parameters, but still suffer
from an exponentially growing Hilbert space, restricting
them to describing short-time dynamics in one or two
dimensions. These limitations make these models diffi-
cult to use in mesoscopic parameter scans required for
computational screening.

Delocalised kinetic Monte Carlo (dKMC) is an
effective-Hamiltonian model that was the first to in-
clude delocalisation, disorder, and polaron formation on
a mesoscopic scale in three dimensions, demonstrating
that delocalisation significantly enhances charge separa-
tion [17, 18]. dKMC also explains how this enhancement
occurs. Previously, the commonly assumed mechanism
was that delocalisation increases the initial separation of
the electron and hole, thereby reducing the Coulombic
attraction between them [6]. Instead of this energetic
effect, dKMC shows that delocalisation enhances charge
separation through a kinetic effect of faster charge trans-
port [18]. However, dKMC is still computationally ex-
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Figure 1. The jKMC model of partially delocalised CT-state separation in disordered materials. (a) The
starting point of jKMC is a lattice of sites with disordered energies (different shades of colours), nearest-neighbour couplings
J , and coupled to the environment (motion lines). A planar heterojunction is modelled by restricting the electron and the
hole to the donor (blue) and acceptor (orange) lattice sites, respectively. (b) Diagonalising the Hamiltonian (in the polaron
frame, and over the donor and acceptor domains separately) yields partially delocalised polarons with a distribution of shapes
and sizes. (c) jKMC uniformises the polarons to model transport over a lattice of identical, spherically delocalised states.
This delocalisation allows polarons to jump over their nearest neighbours and find more paths towards charge separation.
Delocalisation also facilitates long-range recombination of the polarons (white arrow).

pensive and limited to small amounts of delocalisation,
meaning that wider use of delocalisation models requires
a simpler model that captures the same kinetic effects.

Recently, we developed jumping kinetic Monte Carlo
(jKMC) [25], a model of partially delocalised charge
transport that strikes a balance between computational
speed and accuracy while allowing delocalisation, dis-
order, and polarons to be treated on mesoscopic scales.
For single-carrier transport, it has nearly the same com-
putational cost as conventional kinetic Monte Carlo
(KMC), but an accuracy approaching that of dKMC.
jKMC achieves its performance by modelling charge
transport over a lattice of identical, spherically delo-
calised polarons to yield an easy-to-calculate hopping
rate. The delocalisation allows polarons to jump bey-
ond nearest neighbours, with a rate that is the Marcus
rate [26] modified with a distance-dependent exponential
prefactor, d

ae
−2(d−a)/rdeloc . This correction is similar to

the phenomenological factor e−2γd often used in Miller-
Abrahams hopping rates [27], except that it is rigorously
justified, as opposed to being a fitting parameter [28–34].

Here, we extend jKMC to the two-body problem of
charge separation and show that it reproduces the sep-
aration efficiencies of dKMC, significantly higher than
the corresponding KMC models. With its low computa-
tional cost, jKMC can be applied in parameter regimes
inaccessible to dKMC and the two-body version retains
the similarity to KMC that means it can be used in any
KMC code.

I. METHODS

For simplicity, we model an OPV as a planar donor-
acceptor heterojunction organised as a lattice of sites
(fig. 1a). Disorder is introduced through assigning each
site an independent random energy from a Gaussian
density of states (DOS) of width σ [28]. We assume
nearest-neighbour coupling for the lattice, and that each
site is linearly coupled to an identical, independent bath

of harmonic oscillators. The donor and acceptor are
set to have identical material parameters except that
their DOSs are assumed to be sufficiently separated that
the hole and electron are restricted to their respective
domains. This assumption allows the charges to only
interact via the Coulomb attraction or electron-hole
recombination to the ground state.

The full Hamiltonian of the model is unimportant
for what follows, but is given in our previous dKMC
work [18]. Its only important feature is that, because
of the disorder, its eigenstates have irregular shapes,
off-lattice positions, and varying amounts of delocalisa-
tion (fig. 1b), all of which make modelling transport
difficult. In dKMC, the eigenstates are found by di-
agonalising the system Hamiltonian after applying the
polaron transformation [17, 18].

In jKMC, to reduce the computational cost, we uni-
formise the polaron eigenstates by assuming that they
are identical, exponentially decaying, spherical polarons
whose centres are located on the original cubic lattice
(fig. 1c) [25]. Polaron state |ν⟩ is described by the wave-
function

|ν⟩ = A
∑
i

exp

(
− diν
rdeloc

)
|i⟩ , (1)

where the delocalisation radius rdeloc describes the extent
of delocalisation, the sum runs over all lattice sites i,
diν is the distance between site i and the centre of the
polaron, and A = (

∑
i exp (−2diν/rdeloc))

−1/2 is the
normalisation. The delocalisation radius rdeloc must
be chosen to capture the effective delocalisation in the
system, based on a sample of polaron eigenstates [17, 18].

In the two-particle problem of charge separation, the
Hamiltonian describes the joint Hilbert space of the elec-
tron and the hole, and its eigenstates (in the polaron
frame) are joint electron-hole polaron states [18]. Find-
ing them by diagonalisation, as is done in dKMC [18],
is an expensive calculation that, in three dimensions,
is only possible in small systems. To reduce this cost,
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we assume in jKMC that each joint electron-hole state
is separable, |ν⟩ = |νD, νA⟩, a product of independent
polaron states |νD⟩ of the hole and |νA⟩ of the electron,
which can be obtained by diagonalising the donor and
acceptor Hamiltonians separately (fig. 1b). This approx-
imation is assisted by the restriction of the electron and
hole to separate domains, and the low likelihood that
entanglement between them would persist on the long
time scales of interest in jKMC.

To begin the simulation, we initialise the charges in an
interfacial CT state, i.e., in electron and hole polarons
centred on a nearest-neighbour pair of sites lying across
the donor-acceptor interface, with the hole in the donor
and and the electron in the acceptor. Following Balzer
and Kassal [18], we compare two different methods of
selecting the initial interfacial CT state: the random-
initialisation method chooses one CT state uniformly at
random, while the thermalised-initialisation method se-
lects the state out of the thermally weighted Boltzmann
distribution.

Transport from these initial states is then modelled
on the lattice by kinetic Monte Carlo, which gives the
probability and the time taken for each hop [28]. In
conventional KMC, the hopping rates are usually given
by nearest-neighbour Marcus rates [26],

kMarcus
if =

2π

ℏ
J2

√
4πλkBT

exp

(
− (∆Eif + λ)

2

4λkBT

)
, (2)

where J is the electronic coupling between neighbouring
sites, λ is the reorganisation energy, T is the temperature,
and the energy between the final and initial sites is

∆Eif = Ef − Ei −
e2

4πϵ0ϵrdif
, (3)

where Ei and Ef are the energies of the initial and final
sites, dif is the distance between them, e is the electron
charge, ϵ0 is the permittivity of free space, and ϵr is the
dielectric constant (we take ϵr = 3.5).

By contrast, in jKMC, the hopping rate is calculated
by assuming that centred on each lattice site is a spher-
ically delocalised polaron of radius rdeloc, described by
eq. (1) [25]. Applying this approximation in the secular
polaron-transformed Redfield equation [35] leads to a
correction of the Marcus rate,

kjKMC
νν′ = kMarcus

νν′ ξνν′ , (4)

where kMarcus
νν′ is the Marcus rate of eq. (2) from polaron

ν to ν′ as if they were nearest neighbours and ξνν′ is a
distance-dependent delocalisation correction,

ξνν′ = A4
∑
⟨i,j⟩

exp

(
−2(diν + djν′)

rdeloc

)
, (5)

where the sum runs over nearest-neighbour pairs of
sites i and j [25]. The delocalisation correction can be
simplified in the limit of small delocalisation (rdeloc ≪ a)
to yield simplified jKMC,

ξsimplified
νν′ =

dνν′

a
exp

(
−2 (dνν′ − a)

rdeloc

)
, (6)
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Figure 2. Estimating the delocalisation radius rdeloc
from the neighbourhood size N . (a) rdeloc depends on
the number of sites accessible to either charge during the
charge separation, because larger N increases the chance
of finding localised energetic traps in the disordered DOS.
We set N = Nestim equal to the number of sites inside a
hemisphere of radius rN , taken to be equal to the charge
separation cutoff, which we assume to be rsep = 5nm. Due to
the uncertainty of our estimate Nestim, we give a range from
Nlower to Nupper, corresponding to rN varying from 3 nm
to 8 nm. In both (b) two and (c) three dimensions, rdeloc,
estimated using eq. (9) and eq. (10), decays as a function of
N . The vertical lines correspond to Nlower (brown), Nestim

(red), and Nupper (yellow), and the corresponding rdeloc is
read off where these lines intersect the appropriate curve.
Results are calculated using randomly initialised CT states,
with σ = 150meV, λ = 200meV, and T = 300K.
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where dνν′ is the hopping distance and a is the lattice
parameter, which we assume to be 1 nm. Simplified
jKMC is therefore similar to inserting the commonly
used phenomenological delocalisation correction e−2γdif

into the Marcus rate, and can be thought of as a rigor-
ous justification of this correction in the limit of small
delocalisation.

The competing process to separation is recombination,
whose rates are also affected by delocalisation. Conven-
tional KMC models allow recombination to occur at a
rate Rrec (which we set to 1010 s−1) when the charges
form a CT state at the interface [36, 37]. Delocalisa-
tion facilitates long-range recombination of the electron
and hole polarons beyond nearest neighbours in a CT
state. The delocalised recombination rate in jKMC
is derived from Fermi’s golden rule following previous
work [18, 38, 39], where using the spherical-polaron ap-
proximation gives

krecνDνA
= RrecA

4

 ∑
i,j∈CT
i∈D,j∈A

exp

(
−dνDi + dνAj

rdeloc

)
2

,

(7)
where νD is a hole polaron in the donor, νA is an electron
polaron in the acceptor, and the sum runs over inter-
facial CT states consisting of donor site i and acceptor
site j (full derivation in the Supporting Information).
Simplifying this rate in the limit of small delocalisation
(rdeloc ≪ a) for use in simplified jKMC yields

krec,simplified
νDνA

= Rrec exp

(
−2(dνDνA

− a)

rdeloc

)
, (8)

where dνDνA
is the distance between the donor and ac-

ceptor polarons (see Supporting Information for details).
The delocalisation radius rdeloc that parametrises

jKMC hopping and recombination rates must be chosen
to capture the effective polaron delocalisation during
the separation process. We quantify the delocalisation
using the inverse participation ratio (IPR), which, for a
spherical state, is

IPRjKMC = A−4

(∑
i

exp

(
− 4diν
rdeloc

))−1

. (9)

To choose rdeloc so that it is representative of the delocal-
isation in the system, we set IPRjKMC to be equal to an
estimate of the thermally weighted polaron IPR during
charge separation in dKMC. The latter is calculated as a
Boltzmann expectation value of the IPR over a number
N of polaron eigenstates,

IPRjKMC(N) =

〈
1

Z

N∑
ν=1

IPRν exp

(
− Eν

kBT

)〉
, (10)

where IPRν and Eν are the polaron IPRs and
energies obtained from the diagonalisation of the
dKMC single-particle Hamiltonian [17, 25], Z =∑N

ν=1 exp (−Eν/kBT ) is the partition function, and the
average ⟨·⟩ is taken over an ensemble of disordered en-
ergetic landscapes (1000 in our calculations) [25]. The
thermal average is taken over a finite number N of

polarons since the charge does not fully sample the
disordered DOS during the charge separation process.

We estimate N based on a typical number of sites
accessible to either of the charges during the charge
separation (fig. 2a). We consider the charges to be
free if their separation exceeds a fixed distance rsep =
5nm [18], so we set N to be equal to the number of
sites inside a hemisphere with radius rN = rsep = 5nm,
i.e., N = ⌊π(rN/a)2/2⌋ in 2D and N = ⌊4π(rN/a)3/6⌋
in 3D. For rN = 5nm, we obtain the central estimates
Nestim = 39 in two dimensions and Nestim = 262 in three
dimensions. However, because these are rough estimates,
we account for uncertainty in the appropriate choice of
N by using lower and upper estimates of N to construct
a range of plausible rdeloc for our results. As shown in
fig. 2a, we choose Nlower and Nupper based on rN = 3nm
and rN = 8nm, respectively. Using this range of N , we
calculate a range of IPRs using eq. (10), then solve
eq. (9) for the range of rdeloc that give the same range
of IPRs (fig. 2b–c). We use this range of rdeloc for both
randomly and thermally initialised CT states. As we
discuss below, the results obtained within this range of
rdeloc are similar, meaning that the uncertainty in N or
rdeloc does not affect our qualitative conclusions.

The simulation can end in two ways. The charges
are considered free if they become separated by at least
rsep = 5nm and the percentage of simulations that end
this way is the IQE. Alternatively, charges can recom-
bine across the donor-acceptor interface. In numerical
simulations, we also impose a maximum hopping limit
to avoid infinite loops, and if the limit is exceeded, the
charges are also considered to have recombined. We set
the cutoff at 10 000 hops, which is sufficient to converge
the IQEs to significantly less than other sources of error.

II. RESULTS & DISCUSSION

jKMC reproduces the significant enhancements in
charge separation efficiency due to delocalisation seen
in dKMC (fig. 3). For randomly initialised CT states
in both two and three dimensions, jKMC predicts IQEs
that are as much as double the corresponding KMC val-
ues, for our chosen parameters. For thermally initialised
CT states in two dimensions with the same parameters,
jKMC predicts a fivefold increase in IQE due to delocal-
isation. Therefore, jKMC captures the significant trends
first predicted by dKMC for both initial conditions.

jKMC is reasonably accurate quantitatively, striking
a balance between accuracy and speed. For both ini-
tialisation conditions, jKMC slightly overestimates the
majority of 2D dKMC IQEs and slightly underestimates
the 3D dKMC IQEs (where those can be calculated).
However, most dKMC IQEs fall within the uncertainty
ranges of jKMC. The uncertainty ranges are sufficiently
narrow to offer a significant separation from KMC pre-
dictions, and even taking the minimum amount of es-
timated delocalisation leads to significantly higher IQEs
than in KMC. The uncertainty range is wider in three
dimensions, due to the larger range of rdeloc (shown in
fig. 2c).

We obtain good results in two dimensions using the
same set of rdeloc for thermally and randomly initialised
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Figure 3. jKMC reproduces the significant delocalisation enhancements of IQE seen in dKMC, in both (a,
c) two and (b, d) three dimensions. Increasing the coupling J produces greater delocalisation, leading to much higher IQEs,
as shown by dKMC, jKMC and simplified jKMC. jKMC reproduces most dKMC IQEs within the range due to uncertainty
in rdeloc (error bars, defined in fig. 2). jKMC is robust to the initial condition, agreeing with dKMC for charges initialised in
interfacial CT states selected both randomly (a, b) and with thermalised weightings (c, d). dKMC is too computationally
expensive in three dimensions to model the full range of J shown. Simplified jKMC slightly overestimates both jKMC
and dKMC, but remains significantly more accurate than conventional KMC. Results are calculated for σ = 150meV,
λ = 200meV, and T = 300K.

CT states (fig. 3a,c), despite the typical initial deloc-
alisation of thermalised states being smaller than that
of randomly initialised ones. This insensitivity to the
delocalisation of the initial state likely occurs because
the separating charges must travel through many other
states before separating, suggesting that the overall IQE
is determined by the effective delocalisation along their
entire trajectory, which, to a good approximation, is
captured by the same rdeloc regardless of initial differ-
ences. The insensitivity to the initial delocalisation
further justifies our assumption that the initial CT state
is separable, an assumption that neglects the additional
localisation caused by the Coulomb attraction between
the charges.

The low computational cost of jKMC allows its use for
calculations impossible in dKMC. In particular, dKMC
is too computationally expensive in three dimensions
for moderately delocalised states or to thermally initial-
ise over a significant number of CT states [18]. How-
ever, jKMC can describe both regimes easily, where it
continues to predict high delocalisation enhancements
(fig. 3b,d).

Despite its simplicity, simplified jKMC also provides
reasonably accurate IQEs, which are still significantly
more accurate than the corresponding KMC IQEs (fig. 3).
The uncertainty in the simplified jKMC IQEs due to

uncertainty in rdeloc is smaller than that of the jKMC
IQEs, indicating that simplified jKMC is more stable
to variations of rdeloc. This stability occurs because the
hopping and recombination rates in simplified jKMC are
scaled by the same exponential factor (e−2(dνν′−a)/rdeloc),
and thus separation and recombination rates increase or
decrease identically when varying rdeloc. These compet-
ing effects cancel out in the ratio defining the IQE to a
higher degree in simplified jKMC than in jKMC.

The low computational cost of jKMC allows it to
perform extensive parameter scans that may assist in
computational screening. Figure 4 compares IQEs for
jKMC, dKMC, and KMC for systems between moderate
(150meV) and high (300meV) disorders. jKMC predicts
that higher disorders lead to larger IQEs, as opposed to
KMC, which shows the opposite trend at high couplings.

The computational cost of jKMC depends on how it is
performed. If rdeloc is treated as a fitting parameter (like
γ), then jKMC has the same cost as conventional KMC
models with non-nearest-neighbour hopping. If rdeloc is
calculated from the material parameters, then jKMC is
slightly more expensive than KMC because some diag-
onalisations are used to calculate rdeloc. However, the
diagonalisations required to calculate rdeloc for jKMC
are much simpler and fewer than those needed in dKMC.
First, we diagonalise only single-particle Hamiltonians
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Figure 4. The low computational cost of jKMC allows extensive parameter scans of organic semiconductors.
In both (a) two and (b) three dimensions, jKMC is more accurate than KMC and significantly cheaper than dKMC, with
jKMC able to model the full parameter range shown. Results are for N = Nestim, λ = 200meV, and T = 300K.

instead of the much larger two-particle Hamiltonians,
which allows us to use the same values of rdeloc that were
used previously for single-particle charge transport [25].
Second, for each energy landscape, these diagonalisa-
tions only need to be carried out once, as opposed to
having to be repeated for every timestep in dKMC.

Extensions that could easily be added to jKMC in
the future would enable the exploration of even wider
parameter spaces for materials discovery. For example,
jKMC could be easily extended to non-identical para-
meters for the donor and acceptor. The assumed planar
heterojunction could also be relaxed to study other mor-
phologies. Modifications to the interface layers [40] could
be performed to study the effects of interfacial dipoles
in driving charge separation [41–44], while including im-
portant effects from delocalisation. Including more than
two particles would enable modelling charge-density ef-
fects and non-geminate recombination under an accurate
mesoscopic treatment of delocalisation.

Future developments to jKMC could also relax the as-
sumptions or approximations used in deriving the jKMC
rate [25], leading to a more widely applicable method.
For example, materials with anisotropic electronic coup-
lings could be modelled by replacing the assumption
of identical spherical polarons with identical ellipsoidal
polarons. Similarly, jKMC could be extended to in-
clude a treatment of long-range electronic couplings,
non-Gaussian DOS, and spatial site-energy correlations.

III. CONCLUSION

We demonstrated that jKMC can reproduce the large
enhancements to charge-separation efficiencies caused
by delocalisation, as first seen in dKMC. Furthermore,
the low computational cost of jKMC has allowed us to
carry out delocalised charge-separation calculations and
parameter scans in regimes beyond the limits of dKMC.
In three dimensions, these calculations are able to ex-
plain near-unity IQEs even in materials with significant
disorder. The functional form of jKMC is a simple modi-
fication of the Marcus rate, which can be used to incor-
porate delocalisation into any charge-separation KMC

model. In the future, we anticipate using the meso-
scopic properties calculated using jKMC—mobilities,
recombination coefficients, and IQEs—as input paramet-
ers for drift-diffusion simulations, thereby unraveling
device-level effects of delocalisation.
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SUPPORTING INFORMATION

S1. Derivation of the jKMC recombination rate

The recombination rate in jKMC is obtained by sim-
plifying a Fermi-golden-rule expression using the same
approximations as those made in deriving the jKMC
hopping rate. Following [18], we start with the recom-
bination rate between the joint polaron-pair state |ν⟩
and the ground state |g⟩, given by Fermi’s golden rule
as

krecν = 2π |⟨ν|H |g⟩|2 ρrec, (S1)

where H is the Hamiltonian connecting the polaron-pair
to the ground state, and ρrec is the density of states.
Inserting into eq. (S1) a resolution of the identity over
the donor and acceptor sites |i, j⟩ gives

krecν = 2π

∣∣∣∣∣∣∣∣
∑

i,j∈CT
i∈D,j∈A

⟨ν|i, j⟩ ⟨i, j|H |g⟩

∣∣∣∣∣∣∣∣
2

ρrec, (S2)

where the sum only runs over pairs of interfacial CT
sites |i, j⟩ because we assume that ⟨i, j|H |g⟩ = 0 oth-
erwise, i.e., that there is no recombination except from
nearest-neighbour sites. Assuming that each CT state is
equally coupled to the ground state, ⟨i, j|H |g⟩ = Jrec,
we obtain [18]

krecν = Rrec

∣∣∣∣∣∣∣∣
∑

i,j∈CT
i∈D,j∈A

⟨ν|i, j⟩

∣∣∣∣∣∣∣∣
2

, (S3)

where Rrec = 2πJ2
recρrec is the recombination rate for a

localised CT state. Therefore, eq. (S3) gives the delocal-
ised recombination rate as the localised recombination
rate Rrec multiplied by a delocalisation correction.

The delocalisation correction can be evaluated for the
spherical polarons used in jKMC by assuming that the
joint polaron-pair state can be separated into independ-
ent electron and hole states (|ν⟩ = |νD, νA⟩, where νD
is the hole polaron in the donor and νA is the electron
polaron in the acceptor), to which we apply the spherical
polaron approximation introduced in the main text,

⟨νD, νA|i, j⟩ = A2 exp

(
− dνDi

rdeloc

)
exp

(
− dνAj

rdeloc

)
,

(S4)
where A = (

∑
i exp (−2diν/rdeloc))

−1/2 is the normal-
isation constant, dνDi is the distance between the centre
of polaron νD and site i (and likewise for dνAj), and
rdeloc is the delocalisation radius. Substituting eq. (S4)
into eq. (S3) yields the jKMC recombination rate,

krecνDνA
= RrecA

4

 ∑
i,j∈CT
i∈D,j∈A

exp

(
−dνDi + dνAj

rdeloc

)
2

.

(S5)
This rate may be further simplified in the limit of

small delocalisation (rdeloc ≪ a) for use with simplified
jKMC. For small rdeloc, the sum in eq. (S5) is dominated
by terms that minimise the distance dνDi + dνAj , where
i and j are sites of interfacial CT states. As shown in
fig. S1, there is one dominant term, with the minimal
dνDi + dνAj = dνDνA

− a. Keeping only this term, and
noting that A = 1 in the limit of localised charges, we
obtain the simplified jKMC recombination rate,

krec,simplified
νDνA

= Rrec exp

(
−2(dνDνA

− a)

rdeloc

)
. (S6)

νD

a

dνAνD

j iνA

Figure S1. The arrangement of sites whose contribu-
tion dominates the jKMC recombination rate. The
dominant terms in eq. (S5) are those with the smallest dis-
tance dνDi + dνAj (shown in black). On the cubic lattice,
the simplest case to consider is if the donor and acceptor po-
larons νD and νA lie in the same row of the lattice, as shown
above. In that case, the distance is minimised and equals
dνDνA − a when the nearest neighbours i and j are collinear
with νD and νA. We use the same value of dνDνA − a even
if νD and νA do not lie in the same row, an approximation
that is justified because the particular shape of the lattice is
not an essential feature of the jKMC model.
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