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Collective behaviour of the components of a quantum system can significantly alter the rates
of dynamical processes within the system. A paradigmatic collective effect is superradiance, the
enhancement in the rate that radiation is emitted by a group of emitters relative to that emitted by
independent emitters. Less studied are collective effects in energy transport, notably supertransfer,
the enhancement of the rate of energy transfer from donors to acceptors due to delocalised excitations.
Despite its proposed significance in photosynthesis, there has been no direct experimental detection
of supertransfer because, in biological or molecular systems, delocalisation cannot be turned on
and off to evaluate its effect on energy transfer. Here, we show that supertransfer could be directly
observed using a quantum device based on a superconducting circuit. The programmability and
control offered by an engineered device would allow controllable delocalisation of quantum states,
giving full tunability over supertransfer. Our guidelines for engineering supertransfer could inform
the design of future quantum-enhanced light harvesters.

Collective (or cooperative) effects occur when the rates
of dynamical processes in a many-body system depend
on its components’ interactions with each other. The
first collective effect to be studied was superradiance of
a radiating gas, where the delocalisation of the system’s
wavefunction across many atoms increases the rate of
emission [1, 2]. The collective effect that is the opposite
of superradiance is superabsorption, where delocalisation
over many particles enhances the absorption rate of
radiation [3, 4], a feature that is exploited in proposed
quantum batteries [4–6].

Collective effects also occur in transport, where su-
pertransfer is the collective enhancement of transport
rates due to delocalisation [7–12]. For example, collective
transport enhancements are known in both non-radiative
energy transfer and in electron transfer, where they are
described by, respectively, generalised Förster resonant
energy transfer (gFRET) [13] and generalised Marcus
theory (gMT) [12]. The rate enhancements due to super-
transfer can improve the efficiency of energy transport
in quantum systems [14]. As a result, supertransfer
is believed to contribute to the high efficiency of light
harvesting in certain photosynthetic antenna complexes,
especially those of purple bacteria [11, 13, 15–17]. The
possible role of collective effects in photosynthesis has
inspired suggestions for using them to improve the ef-
ficiency of artificial light-harvesting devices; in fact, of
all possible coherent enhancements of light harvesting,
supertransfer is the one most likely to be achievable in
natural sunlight [14, 18, 19].

Despite its promise to enhance transfer efficiency,
there have been no direct experimental demonstrations
of supertransfer. In molecular or photosynthetic systems,
this is likely due to the impossibility of turning coher-
ent effects on and off, making it impossible to compare
normal transfer and supertransfer in the same system
to show a clear enhancement due to delocalisation.

Here, we propose an artificial quantum device that
allows tuning the delocalisation in a way that could be
used to definitively show supertransfer. Our proposal
is based on superconducting circuits, which offer pro-
grammability and precise control for studying complex
quantum phenomena [20–22]. Furthermore, we present
design guidelines to optimise energy transfer using su-
pertransfer, which could be incorporated into future
quantum-enhanced light-harvesters.

I. SUPERTRANSFER

Supertransfer [7] is the enhancement of the transfer
rate from an aggregate (or group) of donor sites to an
aggregate of acceptor sites due to coherent delocalisation
among strongly interacting donors, acceptors, or both.
In the following, we will use the language of energy trans-
fer, where the donors are initially excited and transfer
excitation energy (or excitons) to the acceptors; however,
our results hold true for other types of supertransfer, for
example of charge. The transfer rate γ is defined by the
rate of change of the acceptor population PA,

dPA

dt
= γPD, (1)

where PD is the population of the donor aggregate.
The rate γ can be derived through time-dependent

perturbation theory or Fermi’s golden rule [23] when
the coupling between the donor and acceptor aggregates
is weak compared to the system-environment coupling.
We assume that donor and acceptor sites are coupled
through HDA =

∑
jk V

DA
jk |Ak⟩ ⟨Dj | + h.c., where the

states |Dj⟩ and |Ak⟩ describe an excitation on an indi-
vidual donor or acceptor site. The rate of transfer from
donor eigenstate |i⟩ to acceptor eigenstate |f⟩ is then

γ =
2π

ℏ
|⟨i|HDA |f⟩|2 ν(ω), (2)

where ν(ω) is the density of states near |f⟩.
Normal transfer occurs when both eigenstates |i⟩ and

|f⟩ are localised on individual sites, which means that
each donor site independently transfers energy to ac-
ceptor sites. The transfer rate from localised state
|i⟩ = |Dj⟩ to localised state |f⟩ = |Ak⟩ is

γloc ∝ |⟨Ak|HDA |Dj⟩|2 . (3)

The same result is obtained if the initial donor state is
in the mixed state

∑
j pj |Dj⟩ ⟨Dj |, assuming that all

the V DA
jk are equal. In that case, the rate is

γmix ∝
∑
j

pj |⟨Ak|HDA |Dj⟩|2 = γloc, (4)

assuming ν(ω) remains constant.
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Figure 1. Simplest example of supertransfer. Two
degenerate donor sites (blue) interact through a dipole-dipole
interaction (purple) with each other and with an acceptor
site (red). a) Normal transfer. An excitation transfers
from weakly coupled donor sites to the acceptor. Because of
their weak coupling, the donors are in a mixed state of |D1⟩
and |D2⟩, and transfer to |A⟩ occurs at a rate of γloc. b) The
energy diagram corresponding to (a). c) Supertransfer.
The excitation transfers from strongly coupled donors in
the delocalised eigenstate |+⟩ = (|D1⟩+ |D2⟩) /

√
2, with a

rate γdeloc. The transition dipole of |+⟩ is larger than the
transition dipoles of local states, leading to faster transfer,
γdeloc = 2γloc. d) The energy diagram corresponding to (c).

By contrast, supertransfer occurs between delocalised
eigenstates. To show the enhancement due to delocal-
isation, we consider an excited delocalised eigenstate of
the donor aggregate,

|Dα⟩ =
ND∑
j=1

cαj |Dj⟩ , (5)

where ND is the number of donor sites. For example, in
a fully delocalised donor state, cαj = 1/

√
ND, while a

localised state (|Dj′⟩) has cαj = δjj′ . Similarly, we take
a delocalised eigenstate of the acceptor aggregate,

|Aβ⟩ =
NA∑
k=1

cβk |Ak⟩ . (6)

The transfer rate between the delocalised eigenstates
|i⟩ = |Dα⟩ and |f⟩ = |Aβ⟩ is

γdeloc ∝ |⟨Aβ |HDA |Dα⟩|2 =

∣∣∣∣∣∣
∑
j,k

cαjc
∗
βkV

DA
jk

∣∣∣∣∣∣
2

. (7)

This rate is maximised for completely delocalised eigen-
states (cαj = 1/

√
ND and cβk = 1/

√
NA),

γmax
deloc = γloc

∣∣∣∣∣∣
∑
j

∑
k

1√
ND

1√
NA

∣∣∣∣∣∣
2

= NDNAγloc, (8)

meaning that delocalisation can enhance the transfer
rate by a factor of NDNA over the normal transfer rate.

In general, we will describe as supertransfer any increase
in the transfer rate, i.e., any situation where

γloc ≤ γdeloc ≤ NDNAγloc. (9)

The smallest system with supertransfer requires ND =
2 and NA = 1 (fig. 1), resulting in γloc ≤ γdeloc ≤ 2γloc.
It is also possible to attain subtransfer, where the rate
can be reduced below γloc, potentially to zero, by the
destructive interference caused by coefficients cαj and
cβk of opposite sign.

The transfer rate can even increase further if the
number of excitations exceeds the previously assumed
value of one. In that case, the rate can scale with the
size of the system as O(N2

DNA) [9]. However, we do not
consider the multi-excitation case further.

The transfer rate allows us to define the transfer effi-
ciency, a key figure of merit, especially in light harvesting.
For efficient transfer, energy must be transferred to the
acceptor aggregate before it is lost to recombination pro-
cesses, which we assume to occur at some rate γloss. We
define the efficiency as η = γ/(γ + γloss). Supertransfer
increases η as it increases the transfer rate γ for a given
γloss. Another mechanism to improve efficiency is to
suppress loss rates [24, 25].

II. MODEL

To construct a demonstration of supertransfer, we con-
sider aggregates of ND donors and NA acceptors, which
are all coupled to each other and to an environment,
with the Hamiltonian

H = HD +HA +HDA +HDE +HAE +HE, (10)

containing terms describing the donors (D), the accept-
ors (A), the environment (E) and their interactions
(mixed indices). Inspired by light-harvesting systems,
which are weakly excited by sunlight, we assume only
a single excitation in the system and model each donor
and acceptor site as a two-level system. Donor sites Dj

have energies ED
j and interact through couplings V D

jj′ ,

HD =
∑
j

ED
j |Dj⟩ ⟨Dj |+

∑
j ̸=j′

V D
jj′ |Dj⟩ ⟨Dj′ | . (11)

Similarly, in the acceptor site basis,

HA =
∑
k

EA
k |Ak⟩ ⟨Ak|+

∑
k ̸=k′

V A
kk′ |Ak⟩ ⟨Ak′ | . (12)

Donor and acceptor sites interact with each other
through

HDA =
∑
j,k

V DA
jk |Dj⟩ ⟨Ak|+ h.c. (13)

The environment is modelled by coupling each site to
an independent bath of harmonic oscillators,

HE =
∑
j

∑
ξ

ωD
jξa

D†
jξ a

D
jξ +

∑
k

∑
ξ

ωA
kξa

A†
kξ a

A
kξ, (14)

where ℏ = 1 and aDjξ is the annihilation operator for the
ξth environment mode of donor j. Similarly, aAkξ is the
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operator for the ξth mode on acceptor k. The system-
environment interactions are assumed to be linear,

HDE =
∑
j

∑
ξ

gDjξ(a
D
jξ + aD†

jξ ) |Dj⟩ ⟨Dj | , (15)

HAE =
∑
k

∑
ξ

gAkξ(a
A
kξ + aA†

kξ ) |Ak⟩ ⟨Ak| . (16)

The system-environment interactions can be specified
by their spectral densities, JD

j (ω) for donors and JA
k (ω)

for acceptors, where

JD
j (ω) =

∑
ξ

(gDjξ)
2δ(ω − ωξ) (17)

and similarly for JA
k (ω). The strength of system-

environment coupling is quantified by the reorganisation
energy λ, defined for the jth donor as

λD
j =

∫ ∞

0

JD
j (ω)

ω
dω, (18)

and similarly for acceptors. For simplicity, we assume
the reorganisation energies of the donors are the same
(λD

j = λD) and similarly for the acceptors (λA
k = λA).

The simplest model of supertransfer can be obtained
using classical noise, which manifests itself as time-
dependent fluctuations of site energies: ED

j → ED
j +

δED
j (t), EA

k → EA
k + δEA

k (t). Classical noise in site
energies induces dephasing in the site basis, whose effect
on transfer [20, 26] depends on its spectral density J(ω);
here, we use, at each site, the Drude-Lorentz spectral
density

J(ω) =
2ωλ

ω2 + ω2
c

, (19)

where ωc is a cutoff frequency. Additionally, we assume
an ωc large compared to system frequencies, which yields
Markovian dephasing.

The initial eigenstate is the lowest-energy state of the
donor aggregate, whose extent of delocalisation varies
based on system parameters. By tuning these paramet-
ers, the donor aggregate can be prepared in either a fully
localised or a fully delocalised state (fig. 1). To enact
normal transfer, excitation is localised on a donor site,
or, more generally, in a statistical mixture of donor sites
in the density matrix

∑
j=1 pj |Dj⟩ ⟨Dj |. By contrast, to

enact supertransfer, the excitation starts in a delocalised
state |Dα⟩.

We determine γ by numerical simulation of the dy-
namics, generated by H, of the system’s reduced density
matrix ρ(t) (fig. 2). In the limit of weak donor-acceptor
coupling, the dynamics is described by the rate equation
in eq. (1) and γ is given by the golden-rule expression
in eq. (2). To extract γ from the dynamics, we fit the
acceptor population PA(t) to

PA(t) = P∞
A (1− e−γt), (20)

where PA(t) =
∑

j ⟨Aj | ρ(t) |Aj⟩ and P∞
A is the final

acceptor population.

Figure 2. Evaluating the transfer rate γ from pop-
ulation dynamics. Population transfer to acceptor plot-
ted for three values of donor-acceptor coupling V DA with
λA = 80MHz and λD = 10MHz. The solid lines are the
numerically exact calculations of the acceptor populations,
which are fitted to eq. (20) (dashed lines) to find the values of
γ. The transfer is described by a rate equation when Rule 1
(V DA ≪ λD + λA) is met, as it is for V DA = 10MHz. At
V DA = 30MHz, the exponential behaviour begins to break
down, and it is a completely inaccurate description of the
dynamics at V DA = 90MHz. Other parameter values are
given in table 1. Calculations performed using QuTip [27].

III. DESIGN RULES FOR SUPERTRANSFER

There are two design rules for supertransfer, both of
which take the form of time-scale separations.

Rule 1: the transfer must be well described by the
golden-rule rate process of eq. (2). This requirement
is met if the donor aggregate is weakly coupled to the
acceptor aggregate, compared to the system-environment
coupling quantified by the reorganisation energies,

|V DA| ≪ λD + λA. (21)

Rule 2: the eigenstates of either the donor or the
acceptor aggregates (or both) must be delocalised. For
the donors (with the same applying for the acceptors),
this can be achieved if the intra-aggregate couplings
V D are greater than both the static disorder in the
aggregate (the variance δD of the set {ED

j }) and the
dynamic disorder (quantified by λD), i.e.,

V D ≳ δD, λD. (22)

IV. EXPERIMENTAL PROPOSAL

The design rules above can be used to demonstrate
supertransfer using a superconducting architecture.

The simplest case of supertransfer—shown in fig. 1—
could be implemented by meeting three requirements.
First, it requires three sites: two donors and one acceptor
(ND = 2 and NA = 1). Second, the energies of these
sites must be tunable to ensure that the acceptor energy
is lower than those of the donors and to allow noise injec-
tion. Third, it must be possible to control delocalisation
to show a higher transfer rate in the delocalised case
compared to the localised one.
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Figure 3. Proposed superconducting circuit quantum electrodynamics (cQED) devices demonstrating con-
trollable supertransfer. Both circuits realise the model of fig. 1 using flux-tunable transmon qubits. a) In Circuit 1, the
donors (blue) are coupled to each other directly through capacitors. b) In Circuit 2, the coupling between sites is mediated
by two buses (purple). c) In both circuits, noise can be introduced using an independent solenoid on each site; fluctuating
the current I through the solenoids produces fluctuating magnetic fluxes Φ through the transmon loops, changing their site
energies.

Parameter Value (MHz) Implementation in Implementation in
Circuit 1 Circuit 2

V D 10 CD C̃D

V DA 10 CDA C̃DA

ED − EA 148 ED − EA ẼD − ẼA

δD 5 ⟨δED(t)⟩ ⟨δẼD(t)⟩
λD 10 λcl

D λ̃cl
D

λA 80 λcl
A λ̃cl

A

Table 1. Sample of proposed parameters for showing supertransfer in Circuit 1 and Circuit 2, being values that are
experimentally feasible in cQED experiments [21].

These requirements are all achievable experimentally
using a superconducting circuit quantum electrodynam-
ics (cQED) architecture. In cQED, the sites can be
implemented as transmon qubits whose energy can be
tuned using an external magnetic field [28]. The coup-
lings between the sites can be mediated either by capa-
citive couplings as in fig. 3a or using a bus as in fig. 3b.

The Hamiltonian of the required cQED circuit is

Hcircuit = EDσz
1 + (ED + δD)σz

2 + EAσz
A

+ CDσx
1σ

x
2 + CDA(σx

1σ
x
A + σx

2σ
x
A) + h.c., (23)

where σz
i and σx

i are Pauli operators for site i, while
CD and CDA are couplings. For example, for donor 1,
σz
1 = |D1⟩ ⟨D1| − |G⟩ ⟨G| and σx

1 = |D1⟩ ⟨G|+ |G⟩ ⟨D1|,
where |G⟩ is the state of the system with no excitations.
Hcircuit preserves the number of excitations and reduces
to H when restricted to its single-excitation subspace.

Site energies are tunable because transmon energies
are sensitive to external magnetic fields [21, 29, 30],

Hqb = Eqb(Φ)σz. (24)

The energy Eqb can be tuned between hardware-
dependent values of Emin and Emax by tuning the mag-

netic flux Φ through the transmon’s superconducting
loop (fig. 3) from 0 to Φ0π/2, where Φ0 = h/2e is the
flux quantum [30]. Experimentally, Eqb(Φ) is typically
tunable across a range Emax −Emin of around 100MHz,
or, in some hardware, up to 1GHz [29, 31, 32].

The tunability of flux-tunable transmons is used to
engineer static disorders and also a dephasing environ-
ment by fluctuating the energy levels [20]. To generate
the fluctuating flux Φ(t), a fluctuating current I(t) is in-
jected into a solenoid to generate a fluctuating magnetic
field B(t) as in fig. 3c. For small currents, the change
in the energy of site i (δEi(t) = Ei(t)− ⟨Ei(t)⟩) due to
a change in current δI(t) is

δEi(t) ≈
dEi

dΦi

dΦi

dBi

dBi

dIi
δIi(t), (25)

where the product of the derivatives is a calibration
factor that can be experimentally determined.

The mean of the fluctuations ⟨δEi(t)⟩ gives the static
disorder δi. The effect of the dynamic disorder induced
by the classical noise signal δEi(t) is determined by its
spectrum Jcl(ω), which is the Fourier transform of the
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Figure 4. Donor parameters in Circuit 1 can be tuned
to switch the dynamics from normal transfer at rate
γ0 to supertransfer at rate 2γ0. Supertransfer is achieved
when Rule 2 is met, i.e., the reorganisation energy λD and the
site detuning δDD are both smaller than the intra-aggregate
coupling V D, as is the case in the bottom-left of the plot.
The rate gradually transitions to that of normal transfer as
either parameter moves away from this region. The other
parameter value are as in table 1, giving γ0 = 0.77µs−1.

site-energy correlation function,

Jcl(ω) = F{⟨δEi(t)δEi(0)⟩}. (26)

The overall effect of the noise is quantified by the reor-
ganisation energy

λcl =

∫ ∞

0

Jcl(ω)

ω
dω. (27)

The final component, the controllable couplings
between sites, can be realised in two different ways,
as shown in fig. 3.

In Circuit 1 (fig. 3a), the couplings C are implemen-
ted as direct capacitive couplings. These can be either
fixed [33–35] or adjustable using a longitudinal electric
field [36]. Capacitive coupling allows a direct implement-
ation of the desired cQED Hamiltonian of eq. (23).

By contrast, in Circuit 2 (fig. 3b), the couplings are
mediated by buses [37–39]. This approach has the ad-
vantage of being more easily scalable to greater numbers
of donors and acceptors. Bus-mediated coupling can be
understood using the Hamiltonian of Circuit 2, where
both of the donors are coupled to the donor bus (a mi-
crowave cavity resonator), the acceptor is coupled to the
acceptor bus, and the two buses are capacitively coupled
to each other,

H2 =

2∑
i=1

(
ED

i σ
z
i + CD

i (b†Dσ
−
i + bDσ

+
i )

)
+ ωDb

†
DbD

+ EAσz
A + CA(b†Aσ

−
A + bAσ

+
A) + ωAb

†
AbA

+ CDA(b†D + bD)(b
†
A + bA), (28)

where σ± = σx ± iσy, bD and bA are the donor and
acceptor bus annihilation operators, ωD and ωA are
the bus resonant frequencies, and CD

i and CA are the
couplings of the qubits to their bus and CDA couples

the two buses. When the sites are far detuned from ωD

and ωA, the baths can be adiabatically eliminated using
the Fröhlich-Nakajima transformation [39, 40] to give
the effective Hamiltonian

Heff =

2∑
i=1

ẼD
i |Di⟩ ⟨Di|+ ẼA |A⟩ ⟨A|+ C̃DDσ−

1 σ
+
2

+ C̃1Aσ−
1 σ

+
A + C̃2Aσ−

2 σ
+
A + h.c., (29)

where the effective couplings and energies are

C̃DD =
CD

1

2∆1

CD
2

2∆2
(∆1 +∆2), (30)

C̃iA = CDACD
i

∆i

CA

∆A
, (31)

ẼD
i = 2ED

i +
(CD

i )2

∆i
, (32)

ẼA = 2EA +
(CA)2

∆A
, (33)

with ∆i = 2ED
i − ωD and ∆A = 2EA − ωA.

The noise spectrum J̃cl(ω) due to fluctuations of
ED

i and EA is given by the Fourier transform of
⟨δẼ(t)δẼ(0)⟩, and the reorganisation energy λ̃cl by
eq. (27).

Simulation results. We simulate the dynamics in Cir-
cuit 1 with the parameters in table 1 using QuTip [27].
These parameters are chosen because they meet Rule 1
and Rule 2 for supertransfer and are representative of
typical values found in cQED systems [21].

When Rule 1 (V DA ≪ λD+λA) is met, the transfer is
exponential (fig. 2). The exponential behaviour breaks
down and becomes oscillatory for V DA ≳ λ.

When Rule 2 (V D ≳ δD, λD) is met, the supertransfer
enhances the transfer rate γ (fig. 4). The maximum
supertransfer rate 2γ0 (for ND = 2 and NA = 1) gradu-
ally decreases to γ0 if the donor parameters leave the
region defined by Rule 2. This gradual change with the
parameters makes supertransfer robust to small changes
in either the static (δ) or dynamic (λ) disorders.

Scaling of supertransfer with the number of donors and
acceptors. The supertransfer rate increases in proportion
to the number of sites participating in the delocalised
donor and acceptor aggregates, according to eq. (9).
This scaling could be experimentally demonstrated by
adding more donor and acceptor sites to Circuit 2, as
shown in fig. 5a. In this enlarged circuit, the number
of participating qubits can be adjusted by detuning
undesired qubits out of the dynamics. The simulation
results in fig. 5b confirm the scaling law of eq. (9).

V. DISCUSSION

We showed that a quantum device based on a cQED
circuit could be engineered to conclusively demon-
strate supertransfer. The simplest supertransfer case is
achieved with ND = 2 and NA = 1, with larger arrange-
ments also possible, as shown in fig. 5.

Circuits 1 and 2 are achievable with current engin-
eering capabilities in cQED, as all required compon-
ents have been experimentally demonstrated. The ne-
cessary couplings can be implemented using either of
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Figure 5. Supertransfer scaling with the number of donors and acceptors. a) Expansion of Circuit 2 for demonstrating
the scaling of the transfer rate. The donors are connected through a bus and the acceptors are connected through a second
bus capacitively coupled to the first. The number of donors or acceptors participating in the dynamics could be changed on
the fly by detuning the energy of unwanted qubits to be much higher than the others. b) Transfer rates, obtained by fitting
simulated acceptor populations using eq. (20). The rate increases as O(NDNA), as expected in supertransfer. For large NA

and ND, the rate is slightly smaller than the predicted NDNAγ0 because eigenstate energies change slightly as additional
sites are added. The other parameter value are as in table 1, giving γ0=0.77µs−1.

two established experimental techniques: direct capa-
citive coupling [33–35] or buses for indirect qubit coup-
ling [29, 38, 41]. Furthermore, the ability to inject noise
into the system has also been demonstrated for both
the Drude-Lorentz spectrum we use and for more gen-
eral ones [20, 42, 43]. Finally, our proposal can be
implemented using simulation times that are an order
of magnitude shorter that typical transmon decoherence
times of 50–120 µs [21].

The two proposed implementations—direct coupling
in Circuit 1 and indirect coupling in Circuit 2—have
complementary advantages. In Circuit 1, there is com-
plete flexibility in selecting all of the couplings, which
means that the mapping of the supertransfer Hamilto-
nian is direct and straightforward. However, the imple-
mentation of all-to-all connectivity would be challenging
when Circuit 1 is scaled up to more donors and ac-
ceptors. In contrast, in Circuit 2, the couplings are
achieved through a bus, facilitating scalability as illus-
trated in fig. 5a. However, the scalability comes at the
cost of a less straightforward mapping of the supertrans-
fer Hamiltonian and limited flexibility in tuning the
parameters, because tuning one circuit parameter can

affect multiple parameters in the effective Hamiltonian
(see eq. (29)). Circuit 2 has the further advantage that
its detuning-based couplings allow for negative coup-
lings, which opens possibilities such as rearranging the
order of bright |+⟩ and dark |−⟩ states.

The robustness of supertransfer to experimental noise
simplifies implementation by reducing the need for pre-
cise parameter engineering. It is feasible in any system
provided that conditions specified by Rule 1 and Rule 2
are satisfied. Furthermore, the resilience to variations in
system parameters and environmental conditions may en-
able applications of supertransfer in quantum-enhanced
engineered systems.
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[7] W. Strȩk, Cooperative energy transfer, Phys. Lett. A

62, 315 (1977).
[8] H. Sumi, Theory on Rates of Excitation-Energy Trans-

fer between Molecular Aggregates through Distributed
Transition Dipoles with Application to the Antenna Sys-
tem in Bacterial Photosynthesis, J. Phys. Chem. B 103,
252–260 (1998).

[9] S. Lloyd and M. Mohseni, Symmetry-enhanced super-
transfer of delocalized quantum states, New J. Phys. 12,
075020 (2010).

[10] M. Merkli, G. P. Berman, and R. Sayre, Electron transfer
reactions: generalized spin-boson approach, J. Math
Chem. 51, 890 (2012).

mailto:ivan.kassal@sydney.edu.au
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1038/ncomms5705
https://doi.org/10.1038/ncomms5705
https://doi.org/10.1126/sciadv.abk3160
https://doi.org/10.1126/sciadv.abk3160
https://doi.org/10.1103/PhysRevApplied.14.024092
https://doi.org/10.1103/PhysRevApplied.14.024092
https://doi.org/10.1016/j.joule.2023.09.003
https://doi.org/10.1016/0375-9601(77)90427-3
https://doi.org/10.1016/0375-9601(77)90427-3
https://doi.org/10.1021/jp983477u
https://doi.org/10.1021/jp983477u
https://doi.org/10.1088/1367-2630/12/7/075020
https://doi.org/10.1088/1367-2630/12/7/075020
https://doi.org/10.1007/s10910-012-0124-5
https://doi.org/10.1007/s10910-012-0124-5


7

[11] S. Baghbanzadeh and I. Kassal, Geometry, supertransfer,
and optimality in the light harvesting of purple bacteria,
J. Phys. Chem. Lett. 7, 3804–3811 (2016).

[12] N. B. Taylor and I. Kassal, Generalised marcus theory
for multi-molecular delocalised charge transfer, Chem.
Sci. 9, 2942 (2018).

[13] K. Mukai, S. Abe, and H. Sumi, Theory of Rapid
Excitation-Energy Transfer from B800 to Optically-
Forbidden Exciton States of B850 in the Antenna Sys-
tem LH2 of Photosynthetic Purple Bacteria, J. Phys.
Chem. B 103, 6096–6102 (1999).

[14] S. Tomasi and I. Kassal, Classification of Coherent
Enhancements of Light-Harvesting Processes, J. Phys.
Chem. Lett. 11, 2348 (2020).

[15] G. D. Scholes and G. R. Fleming, On the Mechanism
of Light Harvesting in Photosynthetic Purple Bacteria:
B800 to B850 Energy Transfer, J. Phys. Chem. B 104,
1854–1868 (2000).

[16] G. D. Scholes, Long-Range Resonance Energy Transfer
in Molecular Systems, Annu. Rev. Phys. Chem. 54,
57–87 (2003).

[17] S. Baghbanzadeh and I. Kassal, Distinguishing the roles
of energy funnelling and delocalization in photosyn-
thetic light harvesting, Phys. Chem. Chem. Phys. 18,
7459–7467 (2016).

[18] S. Tomasi, D. M. Rouse, E. M. Gauger, B. W. Lovett,
and I. Kassal, Environmentally Improved Coherent Light
Harvesting, J. Phys. Chem. Lett. 12, 6143 (2021).

[19] D. M. Rouse, A. Kushwaha, S. Tomasi, B. W. Lovett,
E. M. Gauger, and I. Kassal, Light-Harvesting Efficiency
Cannot Depend on Optical Coherence in the Absence of
Orientational Order, J. Phys. Chem. Lett. 15, 254–261
(2024).

[20] A. Potočnik, A. Bargerbos, F. A. Y. N. Schröder, S. A.
Khan, M. C. Collodo, S. Gasparinetti, Y. Salathé,
C. Creatore, C. Eichler, H. E. Türeci, A. W. Chin,
and A. Wallraff, Studying light-harvesting models with
superconducting circuits, Nat. Commun. 9, 904 (2018).

[21] A. Blais, A. L. Grimsmo, S. Girvin, and A. Wallraff,
Circuit quantum electrodynamics, Rev. Mod. Phys. 93,
025005 (2021).

[22] C. W. Kim, J. M. Nichol, A. N. Jordan, and I. Franco,
Analog quantum simulation of the dynamics of open
quantum systems with quantum dots and microelec-
tronic circuits, PRX Quantum 3, 040308 (2022).

[23] V. May and O. Kühn, Charge and Energy Transfer
Dynamics in Molecular Systems (Wiley, 2011).

[24] S. Tomasi and I. Kassal, Classification of coherent en-
hancements of light-harvesting processes, J. Phys. Chem.
Lett. 11, 2348 (2020).

[25] K. D. B. Higgins, B. W. Lovett, and E. M. Gauger,
Quantum-Enhanced Capture of Photons Using Optical
Ratchet States, J. Phys. Chem. C 121, 20714–20719
(2017).

[26] Q. Huang and M. Merkli, Qubit dynamics with classical
noise, Phys. Open 5, 100043 (2020).

[27] J. Johansson, P. Nation, and F. Nori, QuTiP 2: A Py-
thon framework for the dynamics of open quantum sys-
tems, Comput. Phys. Commun. 184, 1234–1240 (2013).

[28] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.
Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Charge-insensitive qubit design
derived from the Cooper pair box, Phys. Rev. A 76,
042319 (2007).

[29] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop,
B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frun-
zio, S. M. Girvin, and R. J. Schoelkopf, Demonstration of
two-qubit algorithms with a superconducting quantum

processor, Nature 460, 240–244 (2009).
[30] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando,

S. Gustavsson, and W. D. Oliver, A quantum engin-
eer’s guide to superconducting qubits, Appl. Phys. Rev.
6, 021318 (2019).

[31] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster,
B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer,
L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Suppressing charge noise decoherence in
superconducting charge qubits, Phys. Rev. B 77, 180502
(2008).

[32] M. A. Rol, L. Ciorciaro, F. K. Malinowski, B. M. Taras-
inski, R. E. Sagastizabal, C. C. Bultink, Y. Salathe,
N. Haandbaek, J. Sedivy, and L. DiCarlo, Time-domain
characterization and correction of on-chip distortion of
control pulses in a quantum processor, Appl. Phys. Lett.
116, 054001 (2020).

[33] Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura,
D. V. Averin, and J. S. Tsai, Quantum oscillations in
two coupled charge qubits, Nature 421, 823–826 (2003).

[34] A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud,
F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J.
Dragt, C. J. Lobb, and F. C. Wellstood, Entangled
Macroscopic Quantum States in Two Superconducting
Qubits, Science 300, 1548–1550 (2003).

[35] R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero,
M. Neeley, A. D. O’Connell, D. Sank, H. Wang, J. Wen-
ner, M. Steffen, A. N. Cleland, and J. M. Martinis,
Quantum process tomography of a universal entangling
gate implemented with Josephson phase qubits, Nat.
Phys. 6, 409–413 (2010).

[36] Y. Wu, L.-P. Yang, M. Gong, Y. Zheng, H. Deng, Z. Yan,
Y. Zhao, K. Huang, A. D. Castellano, W. J. Munro,
K. Nemoto, D.-N. Zheng, C. P. Sun, Y. xi Liu, X. Zhu,
and L. Lu, An efficient and compact switch for quantum
circuits, npj Quantum Inf. 4, 50 (2018).

[37] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Cavity quantum electrodynamics for
superconducting electrical circuits: An architecture for
quantum computation, Phys. Rev. A 69, 062320 (2004).

[38] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R.
Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A.
Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M.
Girvin, and R. J. Schoelkopf, Coupling Superconducting
Qubits via a Cavity Bus, Nature 449, 443 (2007).

[39] M. Tao, M. Hua, N. Zhang, W. He, Q. Ai, and
F. Deng, Quantum simulation of clustered photosyn-
thetic light harvesting in a superconducting quantum
circuit, Quantum Eng. 2, e53 (2020).

[40] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M.
Girvin, M. H. Devoret, and R. J. Schoelkopf, Quantum-
information processing with circuit quantum electro-
dynamics, Phys. Rev. A 75, 032329 (2007).

[41] C. Song, K. Xu, W. Liu, C.-p. Yang, S.-B. Zheng,
H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang,
D. Xu, D. Zheng, X. Zhu, H. Wang, Y.-A. Chen, C.-
Y. Lu, S. Han, and J.-W. Pan, 10-qubit Entanglement
and Parallel Logic Operations with a Superconducting
Circuit, Phys. Rev. Lett. 119, 180511 (2017).

[42] P. Solinas, M. Möttönen, J. Salmilehto, and J. P. Pekola,
Cooper-pair current in the presence of flux noise, Phys.
Rev. B 85, 024527 (2012).

[43] Y. Sung, A. Vepsäläinen, J. Braumüller, F. Yan, J. I.-J.
Wang, M. Kjaergaard, R. Winik, P. Krantz, A. Bengts-
son, A. J. Melville, B. M. Niedzielski, M. E. Schwartz,
D. K. Kim, J. L. Yoder, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, Multi-level quantum noise spectro-
scopy, Nat. Commun. 12, 967 (2021).

https://doi.org/10.1021/acs.jpclett.6b01779
https://doi.org/10.1039/C8SC00053K
https://doi.org/10.1039/C8SC00053K
https://doi.org/10.1021/jp984469g
https://doi.org/10.1021/jp984469g
https://doi.org/10.1021/acs.jpclett.9b03490
https://doi.org/10.1021/acs.jpclett.9b03490
https://doi.org/10.1021/jp993435l
https://doi.org/10.1021/jp993435l
https://doi.org/10.1146/annurev.physchem.54.011002.103746
https://doi.org/10.1146/annurev.physchem.54.011002.103746
https://doi.org/10.1039/c6cp00104a
https://doi.org/10.1039/c6cp00104a
https://doi.org/10.1021/acs.jpclett.1c01303
https://doi.org/10.1021/acs.jpclett.3c02847
https://doi.org/10.1021/acs.jpclett.3c02847
https://doi.org/10.1038/s41467-018-03312-x
https://doi.org/10.1103/revmodphys.93.025005
https://doi.org/10.1103/revmodphys.93.025005
https://doi.org/10.1103/prxquantum.3.040308
https://doi.org/10.1002/9783527633791
https://doi.org/10.1002/9783527633791
https://doi.org/10.1021/acs.jpclett.9b03490
https://doi.org/10.1021/acs.jpclett.9b03490
https://doi.org/10.1021/acs.jpcc.7b07138
https://doi.org/10.1021/acs.jpcc.7b07138
https://doi.org/10.1016/j.physo.2020.100043
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1038/nature08121
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://doi.org/10.1103/physrevb.77.180502
https://doi.org/10.1103/physrevb.77.180502
https://doi.org/10.1063/1.5133894
https://doi.org/10.1063/1.5133894
https://doi.org/10.1038/nature01365
https://doi.org/10.1126/science.1084528
https://doi.org/10.1038/nphys1639
https://doi.org/10.1038/nphys1639
https://doi.org/10.1038/s41534-018-0099-6
https://doi.org/10.1103/physreva.69.062320
https://doi.org/10.1038/nature06184
https://doi.org/10.1002/que2.53
https://doi.org/10.1103/physreva.75.032329
https://doi.org/10.1103/PhysRevLett.119.180511
https://doi.org/10.1103/physrevb.85.024527
https://doi.org/10.1103/physrevb.85.024527
https://doi.org/10.1038/s41467-021-21098-3

	Engineering Quantum-Enhanced Transport by Supertransfer
	Abstract
	Supertransfer
	Model
	Design Rules for Supertransfer
	Experimental proposal
	Discussion
	Acknowledgements
	References


