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Spectroscopy is the most important method for probing the structure of molecules. However,
predicting molecular spectra on classical computers is computationally expensive, with the most
accurate methods having a cost that grows exponentially with molecule size. Quantum computers
have been shown to simulate simple types of optical spectroscopy efficiently—with a cost polynomial
in molecule size—using methods such as time-dependent simulations of photoinduced wavepackets.
Here, we show that any type of spectroscopy can be efficiently simulated on a quantum computer
using a time-domain approach, including spectroscopies of any order, any frequency range, and
involving both electric and magnetic transitions. Our method works by computing any spectroscopic
correlation function based on the corresponding double-sided Feynman diagram, the canonical
description of spectroscopic interactions. The approach can be used to simulate spectroscopy of both
closed and open molecular systems using both digital and analog quantum computers.

The simulation of quantum systems was the first pro-
posed application of quantum computers [1, 2]. Since
then, quantum algorithms have been developed [3–13],
and experimentally demonstrated [11, 14–21], for many
problems in quantum chemistry, promising the solution
of previously intractable computational problems.

A promising application for quantum computing is
predicting spectra; spectroscopy is the most important
experimental probe of molecular structure and being
able to predict and interpret spectra is critical to under-
standing chemical behaviour. Spectroscopic techniques
can be characterized by their frequencies and the order
of light-matter interactions involved. Spectroscopy en-
compasses the entire electromagnetic spectrum, from
gamma-ray Mössbauer spectroscopy to radio-wave nuc-
lear magnetic resonance (NMR) spectroscopy. Within
this range, X-ray, UV-visible, infrared, and microwave
spectroscopies probe different molecular degrees of free-
dom. The simplest, linear, spectroscopies measure light
absorption, while nonlinear spectroscopies such as Ra-
man, pump-probe, and 2D spectroscopies involve higher-
order interactions, probing chemical dynamics. Finally,
differential spectroscopy probes differences in response
between two spectra. For example, dichroism spectro-
scopy measures the differential absorption of two light
polarizations to examine anisotropic or chiral molecules.

However, accurate prediction of spectroscopic signals
is computationally challenging. This challenge takes
different forms depending on whether the computations
are carried out in the frequency domain or in the time
domain. In the frequency domain, spectra are gener-
ated by calculating eigenstates and eigenvalues to give
individual spectral peaks. This approach is limited to
small molecules and certain spectroscopies; in particu-
lar, when electronic and nuclear degrees of freedom are
coupled (e.g., in vibronic spectroscopies), the number
of relevant transitions grows exponentially with mo-
lecular size [22–26]. The alternative, which avoids this
scaling problem, is simulating spectroscopy in the time
domain, where the computational cost is determined
not by the number of eigenstates but by the spectral
resolution desired [22–26]. The time-domain approach
describes spectra as Fourier transforms of correlation
functions, changing spectroscopy from an eigenvalue
problem to a dynamics problem. However, this ap-
proach also quickly becomes computationally expensive
because it requires simulating quantum molecular dy-

namics, a task for which state-of-the-art methods such as
multi-configuration time-dependent Hartree have costs
that can grow exponentially with molecule size [27, 28].
Therefore, there remain spectroscopic problems that are
computationally intractable using either approach.

Quantum computers could simulate spectroscopy effi-
ciently (in polynomial time), but algorithms for doing
so have been developed only for certain types of spec-
troscopy. As in classical computing, the earliest com-
putational spectroscopy on quantum computers was in
the frequency domain. In particular, many algorithms
have been developed to simulate purely electronic spec-
troscopy, whether linear [29–31] or higher-order [32, 33].
Frequency-domain algorithms have also been developed
to simulate vibrational and vibronic spectroscopies [34–
39]. However, quantum frequency-domain calculations
suffer from the same poor scaling as their classical coun-
terparts because the number of transitions to be calcu-
lated scales exponentially with system size. However, be-
cause dynamics can be simulated efficiently on quantum
computers, the time-domain approach can be translated
into efficient quantum spectroscopy algorithms, as has
been done for linear [18] and 2D [40–42] electronic and
vibronic spectroscopy as well as for NMR [43] and X-ray
spectroscopy [44]. Nevertheless, these advances have
dealt with specific types of spectroscopy, making it un-
clear whether non-optical, higher-order, or differential
spectroscopies could be simulated.

A further problem for most existing time-domain
methods is that they assume that the transition-dipole-
moment operator µ can be implemented on a quantum
computer using a linear combination of polynomially
many (in system size) unitaries. This assumption is true
for electronic spectroscopies, where often a small, con-
stant number of electronic states is relevant. However,
it fails for spectroscopies involving continuous degrees of
freedom, such as vibronic spectroscopies. In that case,
depending on how the continuous degree of freedom is en-
coded on the quantum computer, known decompositions
of µ can require exponentially many unitaries.

Here, we show that any type of spectroscopy can
be efficiently simulated on a quantum computer using
the time-domain representation. Our method achieves
its generality by directly constructing quantum circuits
based on double-sided Feynman diagrams, the canon-
ical representations of spectroscopic interactions to any
order [45–47]. In addition, it avoids the problem of in-
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Order Example Representative correlation function

1 Linear absorption (incl. UV-vis, infrared, X-ray, Mössbauer) ⟨µ(t1)µ(0)ρ(0)⟩
CD and MCD spectroscopy ⟨m(t1)µ(0)ρ(0)⟩

2 Sum/difference frequency generation ⟨µ(t2)µ(t1)µ(0)ρ(0)⟩
3 Pump-probe spectroscopy (incl. transient absorption) ⟨µ(0)µ(t1)µ(t2)µ(0)ρ(0)⟩

2D spectroscopy (incl. electronic, infrared, and NMR) ⟨µ(t3)µ(t2)µ(t1)µ(0)ρ(0)⟩
Raman spectroscopy (incl. CARS and CSRS) ⟨µ(0)µ(t1)µ(t1)µ(0)ρ(0)⟩
2DCD spectroscopy ⟨m(0)µ(t1)µ(t3)µ(t2)ρ(0)⟩

4 Four-wave mixing ⟨µ(t4)µ(t3)µ(t2)µ(t1)µ(0)ρ(0)⟩
5 Fifth-order Raman spectroscopy ⟨µ(t5)µ(t4)µ(t3)µ(t2)µ(t1)µ(0)ρ(0)⟩
n ⟨µ(tn) · · ·µ(t1)µ(0)ρ(0)⟩

Table 1. Molecular spectroscopies categorized by the order of the interaction involved, which determines the
correlation functions to be computed. µ denotes the electric transition-dipole moment and m the magnetic one. CD: circular
dichroism; MCD: magnetic circular dichroism; CARS: coherent anti-Stokes Raman spectroscopy; CSRS: coherent Stokes
Raman spectroscopy; 2DCD: two-dimensional circular dichroism.

efficient unitary decompositions of µ by avoiding them
altogether; instead, it computes correlation functions as
derivatives of circuits that use explicitly unitary operat-
ors of the form e−iµt [48].

Our approach includes all previous time-domain tech-
niques as special cases, including purely electronic and
purely vibrational ones. The algorithm’s efficiency stems
from the time-domain approach, meaning that it inher-
its the polynomial-time scaling of standard quantum
algorithms for simulating time evolution [2, 4, 6–9, 13, 49–
51]. The method is equally applicable to electric-field
spectroscopies and those that involve magnetic interac-
tions, such as circular dichroism. Finally, the method
can simulate spectroscopy in open systems to account
for the sensitive dependence of spectra on the molecular
environment. All of these features can be implemen-
ted whether the dynamics is simulated using digital or
analog quantum computers.

I. SPECTROSCOPIC CORRELATION
FUNCTIONS

Time-domain computational spectroscopy is based on
correlation functions that emerge from the perturbative
expansion of the light-matter interaction [45]. All types
of spectra can be written as Fourier transforms of sums
of correlation functions, with examples given in table 1.
Light-matter interaction is described by the Hamiltonian

H(t) = H0 − µ ·E(t)−m ·B(t), (1)

where H0 is the molecular Hamiltonian, µ is the electric-
dipole operator, E(t) is the electric field, m is the
magnetic-dipole operator, and B(t) is the magnetic field.
Electric transitions are almost always stronger than
magnetic ones (µ · E(t) ≫ m · B(t)), so it is common
to neglect the latter. For now, we will consider only
the electric perturbation, and return to spectroscopies
with magnetic effects below. For simplicity we will also
assume the light is linearly polarized, µ ·E(t) = µE(t).

Spectroscopy in the time domain is well understood
through perturbation theory, which describes a sequence
of light-matter interactions [45, 46]. The total spectro-

scopic signal is proportional to the molecular polariza-
tion P (t). In the perturbative expansion, the nth-order
term in P (t) is a convolution of the nth-order response
function R(n)(t, tn, . . . , t1) with the electric field [45]:

P (n)(t) =

∫ t

0

dtn · · ·
∫ t2

0

dt1E(tn) · · ·E(t1)

×R(n)(t, tn, . . . , t1), (2)

where the interaction-picture response function is

R(n)(t, tn, . . . , t1) =

⟨µ(t)[µ(tn), · · · [µ(t2)[µ(t1), ρ(0)]] · · · ]⟩, (3)

and where we have assumed that E(t) = 0 for t < 0.
Because R(n) is composed of n nested commutators,

it is a sum of 2n terms, R(n) =
∑2n

j=1R
(n)
j , where each

is of the form

R
(n)
j (t, tn, . . . , t1) =

⟨µ(tKk
) · · ·µ(tK1)ρ(0)µ(tB1) · · ·µ(tBb

)⟩, (4)

representing a molecule interacting with the field k times
on the ket side and b times on the bra side, where
tK1 < · · · < tKk

= t, tB1 < · · · < tBb
, i.e., the two

sets of interactions times are time ordered. The total
number of interactions is one more than the order of the
response function, k + b = n+ 1; the final, (n+ 1)th µ
always acts on the ket and occurs because the R(n)

j are
expectation values of µ at the final time.

Each R(n)
j corresponds to one of the possible double-

sided Feynman diagrams, which are widely used for dia-
grammatically cataloging spectroscopic interactions [45,
46]. Identifying and constructing the relevant double-
sided Feynman diagrams for a given type of spectroscopy
makes it clear which correlation functions contribute to
the molecular response and thus the spectrum. Figure 2a
gives an example double-sided Feynman diagram.

The response function R suffices to calculate any spec-
trum, whether it is resolved in time or frequency. While
time-resolved spectra are proportional to P (t) (itself a
function of R), frequency-resolved spectra are its Fourier
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transforms. For example, the frequency-resolved linear
absorption spectrum is

σ(ω) ∝
∫ ∞

−∞
dt eiωtP (1)(t). (5)

In the simplest case, of an electric-field consisting of a
delta-function pulse, E(t1) = Eδ(t1), we get

σ(ω) ∝
∫ ∞

−∞
dt eiωtR(1)(t, 0) (6)

∝
∫ ∞

−∞
dt eiωt⟨µ(t)[µ(0), ρ(0)]⟩. (7)

In multi-pulse experiments, the electric field is a sum
of individual pulses, meaning that spectra can be repor-
ted in terms of time delays between pulses. For example,
the signal in transient-absorption spectroscopy depends
on the delay between the pump and probe pulses, which
are often assumed to be delta functions in time. If
Fourier transforms are taken of some of the delays, one
obtains multi-dimensional frequency-resolved spectra.
For example, in 2D spectroscopy, it is common to take
Fourier transforms of the delays between both the first
and the last pairs of pulses, which, in the limit of delta-
function pulses gives [46]

σ(ω3, τ2, ω1) ∝
∫ ∞

0

∫ ∞

0

dτ1 dτ3 e
iω1τ1eiω3τ3

×
8∑

n=1

R(3)
n (τ3 + τ2 + τ1, τ2 + τ1, τ1, 0), (8)

where the first pulse occurs at t1 = 0 and where τi =
ti+1 − ti is the delay between pulses i and (i+ 1).

Also expressible using correlation functions are differ-
ential spectroscopies, which measure differences between
spectroscopic signals. For example, linear dichroism
spectroscopy measures differences in absorption of linear
polarizations of light,

σLD(ω) = σ∥(ω)− σ⊥(ω), (9)

where σ∥,⊥(ω) are given by eq. (5) for incident light
polarized in two perpendicular directions.

The approach above extends to correlation functions of
arbitrary combinations of electric- and magnetic-dipole
operators, obtained by replacing µ(t) with m(t) as re-
quired. For example, linear absorption due only to
magnetic-dipole transitions involves the correlation func-
tion ⟨m(t)m(0)ρ(0)⟩. Because magnetic interactions
are weak relative to electric ones, the most common
interactions involve mixed correlation functions of µ(t)
with m(t) that are linear in m(t). These include cir-
cular dichroism spectroscopy and its two-dimensional
variant [52, 53]. Circular dichroism is the relative ab-
sorption of left- and right-circularly polarized light [54],

σCD(ω) = σL(ω)− σR(ω) (10)

∝
∫ ∞

−∞
dt eiωt

(
⟨µ(t)m∗(0)ρ(0)⟩L − ⟨µ(t)m∗(0)ρ(0)⟩R
+ ⟨m(t)µ(0)ρ(0)⟩L − ⟨m(t)µ(0)ρ(0)⟩R

)
(11)

n

|0⟩ H

σx, σy

|ψ⟩ B U(t) A

Figure 1. Hadamard test for a two-point correlation
function of unitary operators A and B [56]. G(t) =
⟨ψ|A(t)B(0) |ψ⟩ can be computed from measured expect-
ation values on the ancilla qubit, G(t) = ⟨σx⟩+ i⟨σy⟩.

For magnetic circular dichroism, the sample is subject
to a static magnetic field, which can be modelled by
adding a field-dependent term H0(B) to the molecu-
lar Hamiltonian. The resulting Zeeman splitting can
break molecular symmetries and allow circular dichroism
measurements of achiral molecules [55].

II. QUANTUM CIRCUIT

Quantum computers can simulate time-domain spec-
troscopy because of their ability to efficiently simulate
chemical dynamics. Here, we show how this ability can
be used to calculate the response functions R(n)

j , after
which it is straightforward to classically carry out the
convolutions in eq. (2) or the Fourier transforms in, for
example, eqs. (5), (8) and (11). Our approach to cal-
culating R(n)

j is to convert any double-sided Feynman
diagram into the corresponding quantum circuit. In
the following examples, we give expressions for correl-
ation functions involving µ, but the algorithm works
for any sequence of Hermitian observables, including
cross-correlations with m.

Our work builds on existing quantum algorithms for
calculating correlation functions. Early papers [56–59]
showed that two-point correlation functions

G(t) = ⟨ψ|A(t)B(0) |ψ⟩ (12)

of unitary operators A and B can be calculated using
the Hadamard test, a form of ancilla-qubit interfero-
metry (see fig. 1) [56]. Later, the Hadamard test was
generalized to n-point correlation functions [48, 60].

The challenge with the Hadamard test is that, in its
original form, it requires the operators to be unitary.
This is sometimes the case, as in spin systems where
observables of interest are Pauli matrices (or products
of them), which are both Hermitian and unitary. The
Hadamard test could be used on non-unitary observables
if they could be decomposed into linear combinations
of unitaries, each of which could then be evaluated sep-
arately and the results summed. However, efficient de-
compositions of this kind are known in only some cases.
This problem is acute in molecular spectroscopy, where
correlation functions involve non-unitary observables
such as µ and m. The exception are two-level systems,
where both µ and m are also unitary Pauli operators.

To compute spectroscopic correlation functions of non-
unitary operators, we use the method of [48], which uses
unitaries of the form exp(−iµt) and extracts correlation
functions through differentiation. For each Hermitian
operator µ in the desired correlation function, we define
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τ1

⇐⇒

...
......

a

b c

n

|0〉 H

σx, σy

ρ(0) K B

τi

|0〉 〈0|
|1〉 〈0|

|1〉 〈1|
|1〉 〈0|
|0〉 〈0|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣µ

µ

µ

µ

t1

t2

ti

t

n

. . .

. . .

|0〉 H

σx, σy

ρ(0) M(F1) U(τ1) M(F2) M(Fi) U(τi) M(Fi+1)

Figure 2. Constructing a quantum circuit for a double-sided Feynman diagram. (a) Example of a double-sided
Feynman diagram corresponding to a high-order correlation function. Time increases upwards and the dipole operator acts
at the specified times. Additional light-matter interactions may occur between times t2 and ti. Absorption is shown by
arrows towards either the bra or the ket and emission by arrows away from them. The dashed arrow indicates the final dipole
operator, which produces the observed signal. (b) The corresponding Hadamard test showing how the double-sided Feynman
diagram maps onto a simple quantum circuit, with ket-side operators K controlled off the |1⟩ state of the ancilla (solid
circle) and the bra-side operators B controlled off |0⟩ (hollow circle). K and B both comprise sequences of time evolution
and applications of the exponentiated dipole operators, M(Fj) = exp(−iµFj); here, K =M(Fi+1)U(τi) · · ·U(τ1)M(F1) and
B = U(τi)M(Fi) · · ·M(F2)U(τ1). (c) The expanded quantum circuit, with operations applied in the same order as in the
Feynman diagram. As in fig. 1, measuring the expectation values ⟨σx⟩ and ⟨σy⟩ produces a correlation function involving M ,
which can then be differentiated to give the desired correlation function involving µ.

the unitary operator that is to be implemented on the
quantum computer,

M(Fj) = exp (−iµFj) , (13)

as well as its Heisenberg-picture version, M(t;Fj) =
U†(t)M(Fj)U(t).

Spectroscopic correlation functions can then be re-
covered as derivatives of the correlation functions of the
corresponding M operators. First, µ can be obtained
from a derivative of each M(Fj),

µ = −i ∂

∂Fj
M(Fj)

∣∣∣∣
Fj=0

. (14)

Therefore, the simplest spectroscopic correlation func-
tion is the derivative

⟨ψ|µ(t)µ(0) |ψ⟩ = (−i)2 ∂2

∂F1∂F2
Q(0, t, F1, F2)

∣∣∣∣
F1=0,F2=0

(15)

of the correlation function Q(0, t, F1, F2) =
⟨ψ|M(t;F2)M(0;F1) |ψ⟩. More generally, for all
response functions,

R
(n)
j (t1, . . . , tn, t) = (−i)n+1 ∂n+1

∂F1 · · · ∂Fn+1

Q
(n)
j (t1, . . . , tn, t, F1, . . . , Fn+1), (16)

where Q(n)
j has same form as R(n)

j , except that all µ
operators are replaced with corresponding M operators.

To simulate spectroscopy on a quantum computer,
our goal becomes constructing quantum circuits for com-
puting Q(n)

j , which can then be differentiated classically
to obtain R(n)

j . Our algorithm for calculating the Q(n)
j ,

illustrated in fig. 2, is a Hadamard test involving oper-
ators B and K that group the interactions acting on
the bra and the ket sides of ρ(0), respectively. First, we
convert the most generic response function (eq. (4)) into
the corresponding Q(n)

j ,

Q
(n)
j (t1, . . . , tn, t, F1, . . . , Fn+1) = ⟨M(tKk

;FKk
) · · ·M(tK1

;FK1
)ρ(0)M(tB1

;FB1
) · · ·M(tBb

;FBb
)⟩, (17)

where, as before, k + b = n+ 1. Rearranging using the cyclic property of the trace and moving to the Schrödinger
picture, which corresponds to evolution on a quantum computer, this becomes

Q
(n)
j (t1, . . . , tn, t, F1, . . . , Fn+1) = ⟨U†(tB1

)M(FB1
)U(tB1

) · · ·U†(tBb
)M(FBb

)U(tBb
)U†(tKk

)︸ ︷︷ ︸
B†

×

M(FKk
)U(tKk

) · · ·U†(tK1
)M(FK1

)U(tK1
)︸ ︷︷ ︸

K

ρ(0)⟩, (18)

with U†(tKk
) grouped into B† so that both K and B are time-evolved for the same total duration.
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The presence of U† in eq. (18) might suggest that it is necessary to simulate reverse time evolution, which
would prevent a generalization to open quantum systems. However, this is not the case because the time-evolution
operators can be telescoped to forward time evolution only, using U(tm)U†(tn) = U(tm − tn) if tm > tn:

Q
(n)
j (t1, . . . , tn, t, F1, . . . , Fn+1) = ⟨U†(tB1

)M(FB1
)U†(tB2

− tB1
) · · ·M(FBb

)U†(tKk
− tBb

)︸ ︷︷ ︸
B†

×

M(FKk
)U(tKk

− tKk−1
) · · ·U(tK2 − tK1)M(FK1)U(tK1)︸ ︷︷ ︸

K

ρ(0)⟩. (19)

An example of the algorithm is given in fig. 2 for computing a specific correlation function

Q(i)
a = ⟨M(t;Fi+1) · · ·M(t1;F1)ρ(0)M(t2;F2) · · ·M(ti;Fi)⟩ (20)

= ⟨M(t2;F2) · · ·M(ti;Fi)M(t;Fi+1) · · ·M(t1;F1)ρ(0)⟩, (21)

where the ellipses indicate that interactions may occur
at intervening times. Partitioning this expression into
B and K factors, we get

B = U(τi)M(Fi) · · ·M(F2)U(τ1), (22)
K =M(Fi+1)U(τi) · · · U(τ1)M(F1),

(23)

where there is only forward time evolution in both B and
K, punctuated by applications of M(Fj) as required,
and τ is the time interval τj = tj+1 − tj .

The quantum circuit for the Hadamard test with B
and K is shown in fig. 2b. For a system initially in pure
state |ψ0⟩, the final state of the quantum circuit is

|Ψ⟩ = 1√
2

(
|0⟩ ⊗B |ψ0⟩+ |1⟩ ⊗K |ψ0⟩

)
. (24)

Then, as in fig. 1, Q(i)
a can be calculated as the sum of

two expectation values, ⟨σx⟩ + i⟨σy⟩. The experiment
must be repeated until the shot noise decreases below
the desired error threshold. For a mixed initial state
ρ(0), all of the results above hold by linearity, and would
allow the simulation, for example, of spectroscopy on
thermal initial states.

At this point, we have calculated Q
(n)
j and need to

numerically differentiate it to recover R(n)
j . Classical

numerical differentiation methods are well-studied [61],
with the simplest being the two-point finite difference,

µ(t) ≈ (−i)
(
M(t; δ)−M(t;−δ)

2δ

)
, (25)

which has a leading-order error of δ2/6 ×
∂3Fj

M(t;Fj)|Fj=0 [61]. If two-point finite differ-
ence is not sufficiently accurate, other numerical
differentiation methods can be used, such as fitting
the data points to a function whose derivative can be
calculated analytically [61]. Numerical differentiation to
compute each µ(t) requires evaluating the corresponding
M(t, F ) at at least two values of F , which increases
the final cost of the algorithm, which we return to in
section IV. Numerical differentiation can be avoided in
the special case of a two-level system, where µ = σx
is both Hermitian and unitary and can be used to
compute the correlation functions directly.

The full quantum circuit for our algorithm is shown in
fig. 2c, where time evolution of the system is punctuated
by controlled applications of M , as required. Import-
antly, the time evolution itself need not be controlled
because, as shown in eqs. (22) and (23), the bra and the
ket components evolve together between applications
of M . With this observation, there is a clear corres-
pondence between the double-sided Feynman diagram
in fig. 2a and the resulting circuit fig. 2c.

III. OPEN SYSTEMS

Our algorithm can also be used to simulate spectro-
scopy in open quantum systems, where time evolution is
non-unitary. Doing so is essential for producing spectra
in a wide range of chemical and physical environments,
which can significantly affect spectral linewidths, intens-
ities, and frequencies.

In open systems, eqs. (2) to (4) still hold [45, 46].
However, in an open system, the time evolution of oper-
ators is generated by the total system-bath Hamiltonian
and is no longer unitary when restricted to the system.
Therefore, in eqs. (2) to (4), instances of the unitary
gate U(t) need to be replaced with the open-system
dynamics U(t), defined through

ρ(t) = U(t)ρ(0). (26)

It might seem that, for a second-order correlation func-
tion such as

⟨µ(t)µ(0)ρ(0)⟩ = ⟨U†(t)µU(t)ρ(0)⟩ (27)

this approach leads to ⟨U†(t)µU(t)ρ(0)⟩, which is unphys-
ical because backwards time evolution U†(t) is undefined
for an open system. However, this difficulty is resolved
by the formulation in eqs. (22) and (23), where the same
correlation function can be simulated using only U(t) by
making the substitution

B = U(t)µ → B = U(t)µ (28)
K = µU(t) → K = µU(t). (29)

Therefore, the quantum circuits in fig. 2, which imple-
ment eqs. (22) and (23) also remain unchanged apart
from the replacement U → U .
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a

b c

anc

sys U M(Fj)

anc

sys U M(Fj)

anc

sys

U

M(Fj)

bath

Figure 3. Simulating open systems. (a) The circuit
elements of the closed-system simulation from fig. 2, which
can be modified to simulate open systems. (b) Modification
for simulating an open system with an explicit bath, where
the system and the bath are governed by global unitary time
evolution and the bath is traced out at the end. (c) Modific-
ation for simulating an open system using engineered noise,
where experimental noise is used to mimic the effects of open
systems. With either modification, the circuits retain the
property that the ancilla qubit only controls the application
of M and not the time evolution itself.

The specific implementation of U(t) depends on the
model being used to describe the open-system dynam-
ics. There are two ways that quantum circuits can
be adapted to simulate open dynamics, whether on di-
gital or analog quantum computers, as shown in fig. 3.
First (fig. 3b), a bath could be explicitly represented
or modelled using additional ancilla qubits [41, 62] or
analog equivalents [63]. In that case, simulating the unit-
ary system-bath evolution would result in non-unitary
reduced system dynamics. Alternatively (fig. 3c), engin-
eered noise could be injected into the quantum simula-
tion to model dissipative effects. The latter approach is
more natural in analog simulators, where protocols have
been developed for injecting chemically relevant noise
into simulations of vibronic dynamics [63, 64].

For example, if we wished to simulate the dynamics of
a system interacting with a Markovian bath, the open-
system dynamics U(t) = eLt is given in terms of the
Lindbladian

L = −i[H, ρ] +
∑

k

γk(LkρL
†
k − 1

2{L
†
kLk, ρ}), (30)

with jump operators Lk acting on the system with
rates γk. There are established approaches for simu-
lating dynamics of this type on both digital [65–67] and
analog [64] quantum computers.

IV. COST

Our algorithm is efficient for any spectroscopy, with
both its memory and time costs scaling polynomially
with both molecular size and relevant properties in the
desired spectrum.

The memory cost is equal to the number of qubits
(or other computational quantum resources) required to

encode the system wavefunction, plus one ancilla qubit.
The cost of the wavefunction encoding depends on the
particular quantum simulation algorithm being used to
simulate the dynamics. For a molecule with η atoms, this
cost is generally O(η) [2]. This linear scaling is achieved
on digital quantum computers in both first-quantized [4,
9, 13] and second-quantized [3, 7] representations, as
well as on analog quantum simulators [8].

The time cost, measured in the number of required
quantum gates, can be determined by multiplying the
cost of each run of the circuit in fig. 2c by the number
of necessary repetitions,

Cost = CUNcorrNsamplesNshotsNderiv, (31)

where the factors depend on the type of spectroscopy
and the desired properties of the spectrum: CU is the
cost of each run of the circuit; Ncorr is the number of
correlation functions Q(n)

j to be calculated for an nth
order spectroscopy; Nsamples is the number of points
used to sample each correlation function Q(n)

j ; Nshots is
the number of times the circuit must be repeated for
each sampling point so that the expectation values ⟨σx⟩
and ⟨σy⟩ converge to a desired accuracy; and Nderiv is
the number of different values of Fj for which Q(n)

j needs
to be calculated so that the corresponding R(n)

j can be
determined by numerical differentiation. Each of these
factors is determined by the desired properties of the
final spectrum, namely its range ωmax, resolution ∆ω,
and accuracy ε.

We estimate CU based on the fact that each run of
the circuit imposes only a small overhead compared to
simulating the corresponding molecular dynamics. The
circuit in fig. 2c is a straightforward time evolution,
punctuated by applications of the controlled-M oper-
ators. The additional cost of the controlled operations
is minimal compared to the cost of the dynamics, and
we neglect it in the following analysis. In general, the
gate cost of quantum-simulation algorithms is polyno-
mial in system size, i.e., O(poly(η)). The order of this
polynomial depends on the type of simulation; for ex-
ample, for grid-based, first-quantized chemical dynamics,
it is O(η2) [4, 9, 13]. In terms of the scaling with the
total simulation time T and simulation error εsim, the
asymptotically best known gate cost is

CU ∈ O(T poly(η) + log ε−1
sim), (32)

achieved by qubitization [9, 50, 51].
Naively, Ncorr would equal 2 × 2n if the real and

imaginary components were measured for each of the
2n correlation functions Q(n)

j . However, this value can
be reduced by a factor of four by the symmetries of
the problem. In particular, the hermiticity of the dipole
moment operator implies that the response function R(n)

j

is a sum of conjugate pairs of Q(n)
j [32, 45, 46]. Each

of those pairs can therefore be evaluated using only the
real or imaginary component of one of the correlation
functions in the pair, as opposed to requiring both the
real and imaginary components of both. For example,
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the first-order response function can be simplified to

R(1)(t, 0) = ⟨µ(t)[µ(0), ρ(0)]⟩ (33)
= ⟨µ(t)µ(0)ρ(0)⟩ − ⟨µ(t)ρ(0)µ(0)⟩ (34)

= ⟨µ(t)µ(0)ρ(0)⟩ − ⟨µ(t)µ(0)ρ(0)⟩† (35)
= 2i Im⟨µ(t)µ(0)ρ(0)⟩, (36)

meaning that linear-absorption spectroscopy can be com-
puted using a single quantity, Im⟨µ(t)µ(0)ρ(0)⟩, as op-
posed to the four real and imaginary parts in eq. (34).
This simplification reduces Ncorr to

Ncorr = 2n−1. (37)

For specific spectroscopies, Ncorr may be less than this
maximum because the rotating-wave approximation or
phase matching can result in certain Feynman diagrams
not contributing to the signal [45, 46]. For example, in
pump-probe spectroscopy, phase matching reduces Ncorr

from 23−1 = 4 to only 3 [45].
T and Nsamples are governed by their Fourier coun-

terparts ωmax and ∆ω. To achieve a spectral resolution
∆ω, the corresponding time series must be of duration
T = 2π/∆ω, transforming eq. (32) into

CU ∈ O(∆ω−1poly(η) + log ε−1
sim). (38)

Similarly, for the spectrum to reach maximum frequency
ωmax, the time series must have resolution ∆t = π/ωmax.
This requires T/∆t = 2ωmax/∆ω sampling points along
each dimension, or a total number of samples

Nsamples = (T/∆t)n = (2ωmax/∆ω)
n. (39)

Nshots is set by the maximum error εshot in the com-
puted spectrum. Each measurement of σx and σy returns
0 or 1, and needs to be repeated

Nshots ∈ O(ε−2
shot) (40)

times to ensure the averages ⟨σx⟩ and ⟨σy⟩ are com-
puted to within a standard error εshot. This remains the
standard error of every point in the frequency-domain
spectrum because the Fourier transform is linear. If
desired, the shot-noise scaling could be improved to
the Heisenberg limit Nshots ∈ O(ε−1) using quantum
amplitude estimation [68].

Finally, Nderiv depends on the method of numerical
differentiation. The simplest case would be two-point
finite difference, where

Nderiv = 2n+1, (41)

because two points are required for the derivative of
Q

(n)
j along each of the (n+ 1) coordinates Fj .
Overall, using two-point finite difference for the deriv-

atives, we arrive at the total gate cost of

Cost ∈ O

(
22n

ε2∆ω

(
2ωmax

∆ω

)n

poly(η)

)
, (42)

given maximum error ε, which we assume is dominated
by the quadratic εshot, neglecting the logarithmic εsim.

This cost is polynomial in system size and, for any
particular spectroscopy (i.e., a given n), in εshot, ωmax,
and ∆ω. In principle, the cost grows exponentially in
n; however, in practice, n is a small constant, rarely
greater than 3 and almost never greater than 5, because
high-order spectroscopy is rarely carried out.

V. DISCUSSION

We have shown that any double-sided Feynman dia-
gram can be converted into a quantum circuit to com-
pute the corresponding correlation function. Therefore,
because of the generality of the correlation-function ap-
proach to spectroscopy, our algorithm can simulate any
type of spectroscopy, regardless of the order of the inter-
actions, whether they are electric or magnetic, whether
the system is isolated or open, or whether static external
fields are included in the molecular Hamiltonian.

The efficiency of our algorithm relies on the efficiency
of Hamiltonian simulation and is independent of any
particular properties of the molecular Hamiltonian. Be-
cause it is possible to simulate molecular dynamics in
polynomial time in system size [2, 4, 6–9, 13, 49–51],
the same polynomial scaling applies to spectroscopy
simulation. Our approach does not constrain how the
molecular system is encoded on the quantum computer
or how the simulation is carried out; in particular, it is
compatible with both digital [4] and analog [8] molecular
simulation, and whether the molecule is represented in
the Born-Oppenheimer approximation or not [4]. We
neglect the cost of preparing the initial state because it
is a constant overhead that would be necessary in any
approach to simulating spectroscopy.

Because it uses the time-domain approach to spectro-
scopy, our method offers an exponential improvement
in scaling over frequency-domain approaches. Its cost,
given in eq. (42) is determined by the desired spectral
properties and is polynomial in the system size η. By
contrast, frequency-domain approaches scale exponen-
tially with η: for an η-atom molecule where each of the
3η− 6 vibrational modes is assumed to have b accessible
states, the number of spectroscopic peaks (transitions
between all pairs of states) that need to be calculated
in the frequency-domain approach grows exponentially
as O

(
(b3η−6)2

)
[18].

Because spectroscopy is the most direct way to probe
the quantum-mechanical features of molecules, we anti-
cipate that early applications of quantum computers in
chemistry will involve the prediction and interpretation
of spectroscopic signals that might be too challenging
for classical computers.

ACKNOWLEDGMENTS

We thank Ryan MacDonell, Patrick Sinnott, and Ar-
kin Tikku for valuable discussions. We were suppor-
ted by the Australian Research Council (FT230100653),
by the United States Office of Naval Research Global
(N62909-24-1-2083), by the Wellcome Leap Quantum
for Bio program, and by the Australian Government
Research Training Program.



8

∗ Email: ivan.kassal@sydney.edu.au
[1] R. P. Feynman, Simulating physics with computers,

International Journal of Theoretical Physics 21, 467
(1982).

[2] S. Lloyd, Universal quantum simulators, Science 273,
1073 (1996).

[3] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, Simulated quantum computation of molecular
energies, Science 309, 1704 (2005).

[4] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and
A. Aspuru-Guzik, Polynomial-time quantum algorithm
for the simulation of chemical dynamics, Proceedings of
the National Academy of Sciences 105, 18681 (2008).

[5] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and
M. Troyer, Elucidating reaction mechanisms on quantum
computers, Proceedings of the National Academy of
Sciences 114, 7555 (2017).

[6] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. John-
son, M. Kieferová, I. D. Kivlichan, T. Menke, B. Pero-
padre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-
Guzik, Quantum chemistry in the age of quantum com-
puting, Chemical Reviews 119, 10856 (2019).

[7] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin,
and X. Yuan, Quantum computational chemistry, Re-
views of Modern Physics 92, 015003 (2020).

[8] R. J. MacDonell, C. E. Dickerson, C. J. Birch, A. Kumar,
C. L. Edmunds, M. J. Biercuk, C. Hempel, and I. Kas-
sal, Analog quantum simulation of chemical dynamics,
Chemical Science 12, 9794 (2021).

[9] Y. Su, D. W. Berry, N. Wiebe, N. Rubin, and R. Bab-
bush, Fault-tolerant quantum simulations of chemistry
in first quantization, PRX Quantum 2, 040332 (2021).

[10] R. Babbush, W. J. Huggins, D. W. Berry, S. F. Ung,
A. Zhao, D. R. Reichman, H. Neven, A. D. Baczewski,
and J. Lee, Quantum simulation of exact electron dy-
namics can be more efficient than classical mean-field
methods, Nature Communications 14, 4058 (2023).

[11] P. Richerme, M. C. Revelle, C. G. Yale, D. Lobser,
A. D. Burch, S. M. Clark, D. Saha, M. A. Lopez-Ruiz,
A. Dwivedi, J. M. Smith, S. A. Norrell, A. Sabry, and
S. S. Iyengar, Quantum computation of hydrogen bond
dynamics and vibrational spectra, Journal of Physical
Chemistry Letters 14, 7256 (2023).

[12] S. M. Young, H. Häffner, and M. Sarovar, Quantum sim-
ulation of weak-field light-matter interactions, Physical
Review Research 5, 013027 (2023).

[13] F. H. da Jornada, M. Lostaglio, S. Pallister,
B. Şahinoğlu, and K. I. Seetharam, A comprehens-
ive framework to simulate real-time chemical dynam-
ics on a fault-tolerant quantum computer (2025),
arXiv:2504.06348.

[14] B. P. Lanyon, J. D. Whitfield, G. G. Gillet, M. E. Goggin,
M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni,
B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G.
White, Towards quantum chemistry on a quantum com-
puter, Nature Chemistry 2, 106 (2010).

[15] A. Kandala, A. Mezzacapo, K. Temme, M. Takita,
M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-
efficient Variational Quantum Eigensolver for Small Mo-
lecules and Quantum Magnets, Nature 549, 242 (2017).

[16] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, S. Boixo, M. Broughton, B. B. Buckley,
D. A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dun-
sworth, E. Farhi, A. Fowler, B. Foxen, C. Gidney,
M. Giustina, R. Graff, S. Habegger, M. P. Harrigan,

A. Ho, S. Hong, T. Huang, W. J. Huggins, L. Ioffe,
S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Ka-
fri, K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov,
A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev,
M. Lindmark, E. Lucero, O. Martin, J. M. Martinis, J. R.
McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni,
W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley,
C. Neill, H. Neven, M. Y. Niu, T. E. O’Brien, E. Ostby,
A. Petukhov, H. Putterman, C. Quintana, P. Roushan,
N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy,
D. Strain, K. J. Sung, M. Szalay, T. Y. Takeshita,
A. Vainsencher, T. White, N. Wiebe, Z. J. Yao, P. Yeh,
and A. Zalcman, Hartree-Fock on a superconducting
qubit quantum computer, Science 369, 1084 (2020).

[17] W. J. Huggins, B. A. O’Gorman, N. C. Rubin, D. R.
Reichman, R. Babbush, and J. Lee, Unbiasing fermionic
quantum monte carlo with a quantum computer, Nature
603, 416 (2022).

[18] R. J. MacDonell, T. Navickas, T. F. Wohlers-Reichel,
C. H. Valahu, A. D. Rao, M. J. Millican, M. A. Curring-
ton, M. J. Biercuk, T. R. Tan, C. Hempel, and I. Kassal,
Predicting molecular vibronic spectra using time-domain
analog quantum simulation, Chemical Science 14, 9439
(2023).

[19] C. H. Valahu, V. C. Olaya-Agudelo, R. J. MacDonell,
T. Navickas, A. D. Rao, M. J. Millican, J. B. Pérez-
Sánchez, J. Yuen-Zhou, M. J. Biercuk, C. Hempel, T. R.
Tan, and I. Kassal, Direct observation of geometric-phase
interference in dynamics around a conical intersection,
Nature Chemistry 15, 1503 (2023).

[20] C. S. Wang, N. E. Frattini, B. J. Chapman, S. Puri,
S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf,
Observation of wave-packet branching through an engin-
eered conical intersection, Physical Review X 13, 011008
(2023).

[21] T. Navickas, R. J. MacDonell, C. H. Valahu, V. C. Olaya-
Agudelo, F. Scuccimarra, M. J. Millican, V. G. Matsos,
H. L. Nourse, A. D. Rao, M. J. Biercuk, C. Hempel,
I. Kassal, and T. R. Tan, Experimental quantum simu-
lation of chemical dynamics, Journal of the American
Chemical Society 147, 23566 (2025).

[22] R. G. Gordon, Molecular Motion in Infrared and Raman
Spectra, Journal of Chemical Physics 43, 1307 (1965).

[23] L. S. Cederbaum and W. Domcke, A many-body ap-
proach to the vibrational structure in molecular elec-
tronic spectra. I. Theory, Journal of Chemical Physics
64, 603 (1976).

[24] E. J. Heller, Quantum corrections to classical photo-
dissociation models, Journal of Chemical Physics 68,
2066 (1978).

[25] E. J. Heller, The semiclassical way to molecular spectro-
scopy, Accounts of Chemical Research 14, 368 (1981).

[26] E. J. Heller, R. Sundberg, and D. Tannor, Simple aspects
of Raman scattering, Journal of Physical Chemistry 86,
1822 (1982).

[27] W. Domcke, D. R. Yarkony, and H. Köppel, Conical
Intersections (World Scientific, Singapore, 2004).

[28] G. A. Worth, H.-D. Meyer, H. Köppel, L. S. Cederbaum,
and I. Burghardt, Using the MCTDH wavepacket
propagation method to describe multimode non-
adiabatic dynamics, International Reviews in Physical
Chemistry 27, 569 (2008).

[29] C.-K. Lee, C.-Y. Hsieh, S. Zhang, and L. Shi, Simulation
of condensed-phase spectroscopy with near-term digital
quantum computers, Journal of Chemical Theory and
Computation 17, 7178 (2021).

mailto:ivan.kassal@sydney.edu.au
https://doi.org/10.1007/bf02650179
https://doi.org/10.1007/bf02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.1113479
https://doi.org/10.1073/pnas.0808245105
https://doi.org/10.1073/pnas.0808245105
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1039/D1SC02142G
https://doi.org/10.1103/PRXQuantum.2.040332
https://doi.org/10.1038/s41467-023-39024-0
https://doi.org/10.1021/acs.jpclett.3c01601
https://doi.org/10.1021/acs.jpclett.3c01601
https://doi.org/10.1103/PhysRevResearch.5.013027
https://doi.org/10.1103/PhysRevResearch.5.013027
https://arxiv.org/abs/2504.06348
https://doi.org/10.1038/nchem.483
https://doi.org/10.1038/nature23879
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1038/s41586-021-04351-z
https://doi.org/10.1038/s41586-021-04351-z
https://doi.org/10.1039/D3SC02453A
https://doi.org/10.1039/D3SC02453A
https://doi.org/10.1038/s41557-023-01300-3
https://doi.org/10.1103/PhysRevX.13.011008
https://doi.org/10.1103/PhysRevX.13.011008
https://doi.org/10.1021/jacs.5c03336
https://doi.org/10.1021/jacs.5c03336
https://doi.org/10.1063/1.1696920
https://doi.org/10.1063/1.432250
https://doi.org/10.1063/1.432250
https://doi.org/10.1063/1.436029
https://doi.org/10.1063/1.436029
https://doi.org/10.1021/ar00072a002
https://doi.org/10.1021/j100207a018
https://doi.org/10.1021/j100207a018
https://doi.org/10.1142/5406
https://doi.org/10.1142/5406
https://doi.org/10.1080/01442350802137656
https://doi.org/10.1080/01442350802137656
https://doi.org/10.1021/acs.jctc.1c00849
https://doi.org/10.1021/acs.jctc.1c00849


9

[30] K. Huang, X. Cai, H. Li, Z.-Y. Ge, R. Hou, H. Li,
T. Liu, Y. Shi, C. Chen, D. Zheng, K. Xu, Z.-B. Liu,
Z. Li, H. Fan, and W.-H. Fang, Variational quantum
computation of molecular linear response properties on a
superconducting quantum processor, Journal of Physical
Chemistry Letters 13, 9114 (2022).

[31] T. J. von Buchwald, K. M. Ziems, E. R. Kjellgren,
S. P. A. Sauer, J. Kongsted, and S. Coriani, Reduced
density matrix formulation of quantum linear response,
Journal of Chemical Theory and Computation 20, 7093
(2024).

[32] T. Kharazi, T. F. Stetina, L. Ko, G. H. Low, and K. B.
Whaley, An efficient quantum algorithm for ab initio
approximations of non-linear response functions, npj
Quantum Information 11, 98 (2025).

[33] I. Loaiza, D. Motlagh, K. Hejazi, M. S. Zini, A. Del-
gado, and J. M. Arrazola, Nonlinear spectroscopy
via generalized quantum phase estimation (2024),
arXiv:2405.13885.

[34] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean,
and A. Aspuru-Guzik, Boson sampling for molecular
vibronic spectra, Nature Photonics 9, 615 (2015).

[35] J. Huh and M.-H. Yung, Vibronic boson sampling: Gen-
eralized Gaussian boson sampling for molecular vibronic
spectra at finite temperature, Scientific Reports 7, 7462
(2015).

[36] Y. Shen, Y. Lu, K. Zhang, J. Zhang, S. Zhang, J. Huh,
and K. Kim, Quantum optical emulation of molecular
vibronic spectroscopy using a trapped-ion device, Chem-
ical Science 9, 836 (2018).

[37] N. P. D. Sawaya and J. Huh, Quantum algorithm for cal-
culating molecular vibronic spectra, Journal of Physical
Chemistry Letters 10, 3586 (2019).

[38] C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y.
Gao, J. Freeze, V. S. Batista, P. H. Vaccaro, I. L. Chuang,
L. Frunzio, L. Jiang, S. M. Girvin, and R. J. Schoelkopf,
Efficient multiphoton sampling of molecular vibronic
spectra on a superconducting bosonic processor, Physical
Review X 10, 021060 (2020).

[39] H. Jnane, N. P. D. Sawaya, B. Peropadre, A. Aspuru-
Guzik, R. Garcia-Patron, and J. Huh, Analog quantum
simulation of non-Condon effects in molecular spectro-
scopy, ACS Photonics 8, 2007 (2021).

[40] M. Bruschi, F. Gallina, and B. Fresch, A quantum al-
gorithm from response theory: Digital quantum simula-
tion of two-dimensional electronic spectroscopy, Journal
of Physical Chemistry Letters 15, 1484 (2024).

[41] F. Gallina, M. Bruschi, R. Cacciari, and B. Fresch, Sim-
ulating non-markovian dynamics in multidimensional
electronic spectroscopy via quantum algorithm, Journal
of Chemical Theory and Computation 20, 10588 (2024).

[42] J. D. Guimarães, J. Lim, M. I. Vasilevskiy, S. F. Huelga,
and M. B. Plenio, Accelerating two-dimensional elec-
tronic spectroscopy simulations with a probe qubit pro-
tocol, Physical Review Research 7, 023130 (2025).

[43] K. Seetharam, D. Biswas, C. Noel, A. Risinger, D. Zhu,
O. Katz, S. Chattopadhyay, M. Cetina, C. Monroe,
E. Demler, and D. Sels, Digital quantum simulation
of NMR experiments, Science Advances 9, eadh2594
(2023).

[44] S. Fomichev, K. Hejazi, I. Loaiza, M. S. Zini, A. Delgado,
A.-C. Voigt, J. E. Mueller, and J. M. Arrazola, Simulat-
ing X-ray absorption spectroscopy of battery materials
on a quantum computer (2024), arXiv:2405.11015.

[45] S. Mukamel, Principles of Nonlinear Optical Spectro-
scopy (Oxford University Press, USA, 1995).

[46] P. Hamm and M. Zanni, Concepts and Methods of 2D In-
frared Spectroscopy (Cambridge University Press, 2011).

[47] J. Yuen-Zhou, J. J. Krich, I. Kassal, A. Johnson, and

A. Aspuru-Guzik, Ultrafast Spectroscopy: Quantum In-
formation and Wavepackets (Institute of Physics Pub-
lishing, Bristol, 2014).

[48] J. S. Pedernales, R. D. Candia, I. L. Egusquiza, J. Cas-
anova, and E. Solano, Efficient Quantum Algorithm
for Computing n-time Correlation Functions, Physical
Review Letters 113, 020505 (2014).

[49] C. Zalka, Simulating quantum systems on a quantum
computer, Proceedings of the Royal Society A 454, 313
(1998).

[50] G. H. Low and I. L. Chuang, Hamiltonian Simulation
by Qubitization, Quantum 3, 163 (2019).

[51] R. Babbush, N. Wiebe, J. McClean, J. McClain,
H. Neven, and G. K.-L. Chan, Low-depth quantum
simulation of materials, Physical Review X 8, 011044
(2018).

[52] Z. Liu, A. Jha, X.-T. Liang, and H.-G. Duan, Transient
chiral dynamics revealed by two-dimensional circular
dichroism spectroscopy, Physical Review E 107, 054119
(2023).

[53] Z. Liu, P. Zhang, C. Mei, X.-T. Liang, A. Jha,
and H.-G. Duan, Transient chiral dynamics in the
Fenna–Matthews–Olson complex revealed by two-
dimensional circular dichroism spectroscopy, Journal
of Physical Chemistry Letters 15, 6550 (2024).

[54] B. Nordén, A. Rodger, and T. Dafforn, Linear Dichroism
and Circular Dichroism: A Textbook on Polarized-Light
Spectroscopy (Royal Society of Chemistry, 2010).

[55] L. D. Barron, Molecular Light Scattering and Optical
Activity , 2nd ed. (Cambridge University Press, 2004).

[56] R. D. Somma, G. Ortiz, E. H. Knill, and J. Gubernatis,
Quantum simulations of physics problems, in Quantum
Information and Computation, Vol. 5105, edited by
E. Donkor, A. R. Pirich, and H. E. Brandt, Interna-
tional Society for Optics and Photonics (SPIE, 2003)
pp. 96 – 103.

[57] B. M. Terhal and D. P. DiVincenzo, Problem of equi-
libration and the computation of correlation functions
on a quantum computer, Physical Review A 61, 022301
(2000).

[58] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme,
Quantum algorithms for fermionic simulations, Physical
Review A 64, 022319 (2001).

[59] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill,
and R. Laflamme, Simulating physical phenomena by
quantum networks, Physical Review A 65, 042323
(2002).

[60] L. Del Re, B. Rost, M. Foss-Feig, A. F. Kemper, and J. K.
Freericks, Robust measurements of n-point correlation
functions of driven-dissipative quantum systems on a
digital quantum computer, Physical Review Letters 132,
100601 (2024).

[61] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, 3rd ed. (Cambridge University
Press, USA, 2007).

[62] H. Wang, S. Ashhab, and F. Nori, Quantum algorithm
for simulating the dynamics of an open quantum system,
Physical Review A 83, 062317 (2011).

[63] C. W. Kim, J. M. Nichol, A. N. Jordan, and I. Franco,
Analog quantum simulation of the dynamics of open
quantum systems with quantum dots and microelec-
tronic circuits, PRX Quantum 3, 040308 (2022).

[64] V. C. Olaya-Agudelo, B. Stewart, C. H. Valahu, R. J.
MacDonell, M. J. Millican, V. G. Matsos, F. Scuccim-
arra, T. R. Tan, and I. Kassal, Simulating open-system
molecular dynamics on analog quantum computers,
Physical Review Research 7, 023215 (2025).

[65] R. Sweke, I. Sinayskiy, D. Bernard, and F. Petruccione,

https://doi.org/10.1021/acs.jpclett.2c02381
https://doi.org/10.1021/acs.jpclett.2c02381
https://doi.org/10.1021/acs.jctc.4c00574
https://doi.org/10.1021/acs.jctc.4c00574
https://doi.org/10.1038/s41534-025-01026-9
https://doi.org/10.1038/s41534-025-01026-9
https://arxiv.org/abs/2405.13885
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1038/s41598-017-07770-z
https://doi.org/10.1038/s41598-017-07770-z
https://doi.org/10.1039/C7SC04602B
https://doi.org/10.1039/C7SC04602B
https://doi.org/10.1021/acs.jpclett.9b01117
https://doi.org/10.1021/acs.jpclett.9b01117
https://doi.org/10.1103/PhysRevX.10.021060
https://doi.org/10.1103/PhysRevX.10.021060
https://doi.org/10.1021/acsphotonics.1c00059
https://doi.org/10.1021/acs.jpclett.3c03499
https://doi.org/10.1021/acs.jpclett.3c03499
https://doi.org/10.1021/acs.jctc.4c01204
https://doi.org/10.1021/acs.jctc.4c01204
https://doi.org/10.1103/PhysRevResearch.7.023130
https://doi.org/10.1126/sciadv.adh2594
https://doi.org/10.1126/sciadv.adh2594
https://arxiv.org/abs/2405.11015
https://doi.org/10.1017/CBO9780511675935
https://doi.org/10.1017/CBO9780511675935
https://doi.org/10.1088/978-0-750-31062-8
https://doi.org/10.1088/978-0-750-31062-8
https://doi.org/10.1103/physrevlett.113.020505
https://doi.org/10.1103/physrevlett.113.020505
https://doi.org/10.1098/rspa.1998.0162
https://doi.org/10.1098/rspa.1998.0162
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.1103/PhysRevE.107.054119
https://doi.org/10.1103/PhysRevE.107.054119
https://doi.org/10.1021/acs.jpclett.4c01179
https://doi.org/10.1021/acs.jpclett.4c01179
https://doi.org/10.1017/CBO9780511535468
https://doi.org/10.1017/CBO9780511535468
https://doi.org/10.1117/12.487249
https://doi.org/10.1117/12.487249
https://doi.org/10.1103/physreva.61.022301
https://doi.org/10.1103/physreva.61.022301
https://doi.org/10.1103/physreva.64.022319
https://doi.org/10.1103/physreva.64.022319
https://doi.org/10.1103/physreva.65.042323
https://doi.org/10.1103/physreva.65.042323
https://doi.org/10.1103/PhysRevLett.132.100601
https://doi.org/10.1103/PhysRevLett.132.100601
https://doi.org/10.1103/physreva.83.062317
https://doi.org/10.1103/PRXQuantum.3.040308
https://doi.org/10.1103/PhysRevResearch.7.023215


10

Universal simulation of Markovian open quantum sys-
tems, Physical Review A 91, 062308 (2015).

[66] A. W. Schlimgen, K. Head-Marsden, L. M. Sager,
P. Narang, and D. A. Mazziotti, Quantum simulation of
the Lindblad equation using a unitary decomposition of
operators, Physical Review Research 4, 023216 (2022).

[67] Z. Ding, X. Li, and L. Lin, Simulating open quantum

systems using Hamiltonian simulations, PRX Quantum
5, 020332 (2024).

[68] G. Brassard, P. Høyer, M. Mosca, and A. Tapp,
Quantum amplitude amplification and estimation, in
Quantum computation and information (Washington,
DC, 2000), Contemporary Mathematics, Vol. 305 (Amer-
erican Mathematical Society, 2002) pp. 53–74.

https://doi.org/10.1103/PhysRevA.91.062308
https://doi.org/10.1103/PhysRevResearch.4.023216
https://doi.org/10.1103/PRXQuantum.5.020332
https://doi.org/10.1103/PRXQuantum.5.020332
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215

	Any type of spectroscopy can be efficiently simulated on a quantum computer
	Abstract
	Spectroscopic correlation functions
	Quantum circuit
	Open systems
	Cost
	Discussion
	Acknowledgments
	References


